The classical algorithm of target tracking _ learning materials

Source: Internet
Author: User
Tags tld
0,online Object tracking:a Benchmark cvpr2013 Overview http://visual-tracking.net/#
Http://cvlab.hanyang.ac.kr/tracker_benchmark_v10.html


1, vtd:visual tracking decomposition cvpr2010 source + Test Video
http://cv.snu.ac.kr/research/~vtd/


2, ct:real-time compressive tracking eccv2012 source + Test Video

Http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm


3, Prost-parallel robust Online simple tracking test video

http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php


4,tld

5, MIL

6, struck

7, Stc:fast Trackingvia spatio-temporal context Learning 2013-11-24

At present, the author has disclosed the support of Multi-scale matlab code

Http://www4.comp.polyu.edu.hk/~cslzhang/STC/STC.htm


8 kcf:kernelized Correlation Filters

http://home.isr.uc.pt/~henriques/circulant/

9. Finally make out and Shang Tang face++ face feature point the same effect, you can test,
When running, do not modify the package name, the package name is consistent with the project can be:
Https://pan.baidu.com/s/1mios2pE


Visual Trackers

We have tested publicly available visual trackers. The trackers are listed in chronological order.


NAME CODE REFERENCE CPF CPF P. Pe 虂 rez, C. Hue, J. Vermaak, and M. Gangnet. COLOR-BASED probabilistic tracking. In ECCV, 2002. KMS kms D. Comaniciu, V. Ramesh, and P. Meer. KERNEL-BASED Object Tracking. Pami, 25 (5): 564 transmission 577, 2003. SMS SMS R. Collins. MEAN-SHIFT Blob tracking through Scale space. In CVPR, 2003. Vr-v vivid/vr R. Collins, Y. Liu, and M. Leordeanu. Online Selection of discriminative tracking Features. Pami, 27 (10): 1631 transmission 1643, 2005. [WWW]
* We also evaluated four trackers included in the VIVID suite. (Pd-v, listen to Rs-v, listen to Ms-v, listen to tm-v). Frag Frag A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the Integral histogram. In CVPR, 2006. [WWW] OAB OAB H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In Bmvc, 2006. [WWW] IVT IVT D. Ross, J. Lim, R.-s. Lin, and M.-h. Yang. Incremental Learning for robust Visual tracking. IJCV, 77 (1): 125 transmission 141, 2008. [WWW] Semit SBT H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008. [WWW] MIL MIL B. Babenko, M.-h. Yang, and S. Belongie. Visual tracking with Online multiple Instance Learning. In CVPR, 2009. [WWW] BSBT BSBT S. Stalder, H. Grabner, and L. van Gool. Beyond semi-supervised tracking:tracking Should is as simple as detection, but not Simpler than. In ICCV Workshop, 2009. [WWW] TLD TLD Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning:bootstrapping Binary classifiers by structural Constraints. In CVPR, 2010. [WWW] VTD Transmission J. Kwon and K. Lee. Visual tracking decomposition. In CVPR, 2010. [WWW] CXT cxt Dinh, N. Vo, and G. Medioni. Context Tracker:exploring supporters and distracters in unconstrained environments. In CVPR, 2011. [WWW] LSK LSK B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust tracking using local Sparse appearance Model and k-selection. In CVPR, 2011. [WWW] Struck struck S. Hare, A. Saffari, and P. Torr. Struck:structured Output tracking with kernels. In ICCV, 2011. [WWW] VTS Transmission J. Kwon and K. Lee. Tracking by sampling trackers. In ICCV, 2011. [WWW] ASLA ASLA x. Jia, H. Lu, and M.-h. Yang. Visual tracking via adaptive structural local Sparse appearance Model. In CVPR, 2012. [WWW] DfT DFT, L. Sevilla-lara and E. Learned-miller. Distribution Fields for tracking. In CVPR, 2012. [WWW] L1APG l1apg C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust L1 Tracker Using accelerated proximal gradient. In CVPR, 2012.l1_tracker ">[www] LOT LOT S. Oron, A. Bar-hillel, D. Levi, and S. Avidan. Locally orderless tracking. In CVPR, 2012. [WWW] MTT T.zhang, B. ghanem,s. Liu,and N. Ahuja. Robust Visual tracking via multi-task Sparse Learning. In CVPR, 2012. [WWW] Oria Oria Y. Wu, B Shen, and H. Ling Online Robust Image alignment via iterative convex. In CVPR, 2012. [WWW] SCM SCM W. Zhong, H. Lu, and M.-h. Yang. Robust Object tracking via sparsity-based collaborative Model. In CVPR, 2012. [WWW] CSK CSK F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant Structure of tracking-by-detection with kernels. In ECCV, 2012. Listening to [www] ct ct

K. Zhang, L. Zhang, and m.-h. Yang. Real-time compressive tracking. In ECCV, 2012. [www]

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.