The two "circles" of JS drawing geometry

Source: Internet
Author: User
Tags cos sin

The point P (x, y) on the circle with radius r is related to the center O (x0,y0): x = X0+rcosa; y = Y0+rsina, A is radians

Example: http://www.zhaojz.com.cn/demo/draw6.html

First, round

//Round/Oval//Dot Polka Dot//R radius//Compressionratio Vertical Compression ratiofunctiondrawcircle (dot, R, compressionratio, data) {varPstart = [Dot[0]+r, dot[1]];//starting point    varPre =Pstart;  for(vari=0; I < 360; I+=5) {rad= i*math.pi/180; Calculate radians//R*math.cos (RAD) Arc's end point relative to Dot's horizontal offset        //Vertical offset of r*math.sin (RAD) arc relative to Dot        //Compressionratio Vertical Compression ratio        varcur = [R*math.cos (RAD) +dot[0], Compressionratio*r*math.sin (RAD) +dot[1]];        DrawLine (pre,cur); Pre= cur;//Save the coordinates of the current point} drawLine (Pre,pstart);//make closed    //Stroke DotsDrawpoint ({pw:2,ph:2,color: ' darkred ', Point:dot});}

Second, ARC

Just as part of the circle, the algorithm is similar to the circle

//Arc Drawing//Dot Polka Dot//R radius//Angle Central Angle//angle between Angleofslope and x-axis//whether pop pops up//Title TagfunctionDrawArc (dot, R, Angle, Angleofslope, pop, title) {varNewDot = [Dot[0], dot[1]]; varA = (ANGLEOFSLOPE+ANGLE/2) *math.pi/180; if(POP) {//calculates the new coordinates of the center PointNewdot[0] = dot[0]+10*Math.Cos (a); newdot[1] = dot[1]+10*Math.sin (a); }        if(!angleofslope) {Angleofslope= 0; }    varAOS = angleofslope*math.pi/180;varAos2 = (angleofslope+angle) *math.pi/180;varPstart = [Newdot[0]+r*math.cos (AOS), Newdot[1]+r*math.sin (AOS)];//the beginning of the arc    varPend = [Newdot[0]+r*math.cos (Aos2), Newdot[1]+r*math.sin (Aos2)];//the end of the arc        varPre =Pstart;  for(vari=0; i < angle; i+=2) {//Inner arc in angle rangerad = (I+angleofslope) *math.pi/180;varcur = [R*math.cos (RAD) +newdot[0], R*math.sin (RAD) +newdot[1]];        DrawLine (pre,cur); Pre=cur; }    }

Three, fan

Connect the ends of the arc to the center of the circle

//Fan//Dot Polka Dot//R radius//Angle Central Angle//Angleofslope The angle of the x-axis to determine the direction of the fan//Whether pop pops up, that is, whether to deviate from the center//Title Tagfunctiondrawsector (dot, R, Angle, Angleofslope, pop, title) {varNewDot = [Dot[0], dot[1]]; varA = (ANGLEOFSLOPE+ANGLE/2) *math.pi/180; if(POP) {//calculates the new coordinates of the center PointNewdot[0] = dot[0]+10*Math.Cos (a); newdot[1] = dot[1]+10*Math.sin (a); }        if(!angleofslope) {Angleofslope= 0; }    varAOS = angleofslope*math.pi/180;varAos2 = (angleofslope+angle) *math.pi/180;varPstart = [Newdot[0]+r*math.cos (AOS), Newdot[1]+r*math.sin (AOS)];//the beginning of the arc    varPend = [Newdot[0]+r*math.cos (Aos2), Newdot[1]+r*math.sin (Aos2)];//the end of the arcDrawLine (Newdot,pstart);//Connecting Center and starting point    varPre =Pstart;  for(vari=0; i < angle; i+=2) {//Inner arc in angle rangerad = (I+angleofslope) *math.pi/180;varcur = [R*math.cos (RAD) +newdot[0], R*math.sin (RAD) +newdot[1]];        DrawLine (pre,cur); Pre=cur; } drawpolyline ([Pre, Pend, NewDot]); //make closed    //Stroke CenterDrawpoint ({pw:2,ph:2,color: ' darkred ', Point:dot}); //label    if(title) {document.write ("<span style= ' height:24px; line-height:24px; width:80px; Text-align:center; color:red; Position:absolute; Left: "+ (newdot[0]+r* (2/4) *math.cos (a) -40) +" PX; Top: "+ (newdot[1]+r* (2/4) *math.sin (a) -12) +" > "+title+" </span> "); }}

The two "circles" of JS drawing geometry

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.