Topic discussion on Equivalent Standard Form

Source: Internet
Author: User

$ \ BF proposition: $ any square matrix $ A $ can be decomposed into reversible arrays $ B $ product of idempotent arrays $ C $

1

$ \ BF proposition: $ any square matrix $ A $ can be decomposed into reversible arrays $ B $ product with symmetric arrays $ C $

1

$ \ BF proposition: $ set $ a, B \ in {P ^ {n \ times N }}$, and $ r \ left (A \ right) + r \ left (B \ right) \ Le N $, $ N $ order reversible matrix $ M $ exists, making $ AMB = 0 $

1

$ \ BF proposition: $ if $ A $ is $ N $, the square matrix of order $ N $ exists, making $ A = ABA, B = Bab $

1

$ \ BF proposition: $ set $ A $ to $ m \ times r$ matrix with a rank of $ r$ $ \ left ({M> r} \ right) $, $ B $ is $ r \ times S $ matrix, there is a reversible array $ p $, so that the $ M-r$ row after $ pa $ is all zero

1

$ \ BF proposition: $ set $ t \ In L \ left ({v, N, f} \ right) $, $ s \ In L \ left ({v, n, f} \ right) $ to make $ TST = T $

1

$ \ BF proposition: $ set $ A \ in {M _ {M \ times N }}\ left (f \ right ), B \ in {M _ {n \ times M }}\ left (f \ right), m \ ge n, \ Lambda \ Ne 0 $, then

\ [{\ RM {}}\ left | {\ Lambda {e_m}-AB} \ right | ={\ Lambda ^ {M-N }}\ left | {\ Lambda {e_n}-Ba} \ right | \]

1

$ \ BF proposition: $ set $ A, B, C $ to $ N $ level matrix, and $ AC = CB $, $ r \ left (C \ right) = r$, then $ A $ and $ B $ have at least $ r$ with the same feature value

1

$ \ BF proposition: $ set $ A, B $ to $ N $ level matrix, and $ BA = A $, $ r \ left (A \ right) = r \ left (B \ right) $, then $ {B ^ 2} = B $

1

$ \ BF proposition: $ set $ {\ Alpha _ 1}, {\ Alpha _ 2}, \ cdots, {\ Alpha _ n} $ is a base of $ {v_n} \ left (f \ right) $, $ A \ in {M _ {n \ times s }}\ left (f \ right) $, and \ [\ left ({{\ beta _ 1 }, {\ beta _ 2}, \ cdots, {\ beta _ s }}\ right) = \ left ({\ Alpha _ 1}, {\ Alpha _ 2 }, \ cdots, {\ Alpha _ n }}\ right) A \] proof: $ \ dim L \ left ({\ beta _ 1}, {\ beta _ 2 }, \ cdots, {\ beta _ s }}\ right) = r \ left (A \ right) $

1

$ \ BF proposition: $ set $ A, B $ to $ N $ level matrix. If $ r \ left ({AB} \ right) = r \ left ({Ba} \ right) $ is true for any $ B $, then $ A = 0 $ or $ A $ reversible

1

$ \ BF proposition: $ set $ p \ in {f ^ {r \ times M }}, Q \ in {f ^ {n \ times s }$, for any $ A \ in {f ^ {M \ times N }}$, $ PAQ = 0 $ is available. Proof: $ p = 0 or Q = 0 $

1

$ \ BF proposition: $ set $ A \ in {m_m} \ left (f \ right), c \ in {M_n} \ left (f \ right) $, for $ B \ in {M _ {Mn} \ left (f \ right) $, $ r \ left ({\ begin {array} {* {20} {c} A & B \ 0 & C \ end {array} \ right) = r \ left (A \ right) + r \ left (C \ right) $, proof: $ A or C $ reversible

1

$ \ BF proposition: $ if $ matrix {A _ {M \ times N }}{ B _ {n \ times P }}{ C _ {P \ times Q }}$ rank all $1 $ matrix $ B $ total $1 $, $ A $ indicates the full column rank and $ C $ indicates the full row rank.

1

$ \ BF proposition: $ set $ A \ in {M_n} \ left (f \ right), r \ left (A \ right) = r \ left ({A ^ 2 }}\ right) $, there is a reversible array $ p $, make $ A = p \ left ({\ begin {array} {* {20} {c} D & 0 \ 0 & 0 \ end {array} \ right) {P ^ {-1 }}$

1

$(04 Zhejiang University 7) $ set $ v = {P ^ {n \ times N }}$ as the linear space on the number field $ p $, set it to $ A, B, c, D \ in {P ^ {n \ times N }}$, for any $ x \ in {P ^ {n \ times N }}$, order \ [\ Sigma \ left (x \ right) = AXB + cx + XD \]

Proof: $ (1) $ \ Sigma $ is a linear transformation on $ V $ (2) $ when $ c = D = 0 $, $ \ Sigma $ the reversible and mandatory condition is $ \ left | {AB} \ right | \ Ne 0 $

 



 

Topic discussion on Equivalent Standard Form

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.