Topic discussion on Exchangeable Arrays

Source: Internet
Author: User

$ \ BF proposition: $ set $ \ Sigma \ In L \ left ({v, N, C} \ right) $, $ {F _ \ Sigma} \ left (\ Lambda \ right) $ is the feature polynomial of $ \ Sigma $, and $ \ left ({F _ \ Sigma} \ left (\ Lambda \ right), {F'} _ \ Sigma} \ left (\ Lambda \ right )} \ right) = 1 $, then

(1) $ \ Sigma \ Tau = \ Tau \ Sigma $ when and only when $ \ Sigma $ is a feature vector of $ \ Tau $

(2) $ \ Sigma \ Tau = \ Tau \ Sigma $ when and only when $ \ Tau $ is $ {\ Sigma ^ 0}, {\ Sigma ^ 1 }, linear Combination of {\ Sigma ^ 2}, \ cdots, {\ Sigma ^ {n-1} $

(3) $ \ Sigma \ Tau = \ Tau \ Sigma $ A Polynomial $ f (x) $, make $ \ Tau = f \ left (\ Sigma \ right) $

1

$ \ BF proposition: $ set $ V $ to $ N $ dimension complex linear space. $ M $ is a non-empty set composed of some linear transformations on $ V $, it is known that the elements in $ M $ do not have non-trivial public invariant subspaces, and the linear transformation $ \ mathcal {B} $ satisfies \ [\ mathcal {A} \ mathcal {B }=\ mathcal {B} \ mathcal {}, \ forall \ mathcal {A} \ in M \] proof: there must be a plural number $ \ Lambda $, making $ \ mathcal {B }=\ Lambda \ mathcal {I} $, $ \ mathcal {I} $ indicates constant transformation.

1

$ \ BF proposition: $ set $ {f ^ n} $ to the $ N $ dimension vector space on the number field $ F $ and $ \ Sigma: {f ^ n} \ to {f ^ n} $ is a linear transformation. For any $ A \ in {M_n} \ left (f \ right) $, \ [\ Sigma \ left ({A \ Alpha} \ right) = A \ Sigma \ left (\ Alpha \ right ), \ forall \ Alpha \ in {f ^ n} \]
Proof: $ \ Lambda \ In F $ exists, so that $ \ Sigma = \ Lambda \ cdot ID {f ^ n }$, where $ id {f ^ n} $ is a constant transformation.

1

$ \ BF proposition: $ set $ a, B \ in {M_n} \ left (f \ right) $. If $ AB = BA $, when $ B $ is a zero-power array, $ \ left | {a + B} \ right | = \ left | A \ right | $

1 2 3 4

$ \ BF proposition: $ set $ \ Sigma, \ Tau \ In L \ left ({v, N, f} \ right) $, and $ {\ Sigma ^ 2 }=\ Sigma $, then $ \ Sigma \ Tau = \ Tau \ Sigma $ is the constant sub-space of $ \ Tau $ and $ im \ Sigma $ only when $ Ker \ Sigma $ and $ im \ Sigma $

1

$ \ BF proposition: $ set $ A \ in {R ^ {n \ times N }}$, known $ A $ in $ {R ^ {n \ times N }}$ center sub \ [C \ left (A \ right) =\ left \ {x \ in {R ^ {n \ times N }}| AX = XA} \ right \} \] is $ {R ^ {n \ times N} $'s sub-space, proof: When $ A $ is a real symmetric array, $ \ dim C \ left (A \ right) \ geqslant N $, and the equal sign is valid only when $ A $ has $ N $ different feature values.

1

$ \ BF proposition: $ set $ \ Sigma, \ Tau $ to $ N $ Dimension Linear Space $ V $ linear transformation, and each has a base composed of feature vectors, the necessary and sufficient conditions for $ \ Sigma \ Tau = \ Tau \ Sigma $ are the presence of a group of bases in $ V $, make each base vector a common feature vector of $ \ Sigma $ and $ \ Tau $

1

$ \ BF proposition: $ if the feature polynomial of $ {A _ {n \ times N }}$ is the same as the least polynomial, $ B $, make $ AB = BA $ if and only if there are times $ \ leqslant n-1 $ polynomials $ f (x) $, make $ B = f (a) $

1

Appendix 

$ \ BF proposition: $ set $ a, B \ in {M_n} \ left (f \ right) $, and the matrix $ A $ has different feature values, if $ AB = BA $, $ A, B $ can be similar to the right corner at the same time.

1

$ \ BF proposition: $ set $ a, B \ in {M_n} \ left (f \ right) $, and $ A, B $ can be subject to cardification, if $ AB = BA $, $ A, B $ can be similar to the right corner at the same time.

1

$ \ BF proposition: $ set $ A, B $ to $ N $ level real symmetric arrays. If $ AB = BA $, orthogonal arrays exist $ q $, so that $ {q ^ {-1} AQ, {q ^ {-1} BQ $ can be similar to Keratin at the same time

1

$ \ BF proposition: $ set $ a, B \ in {M_n} \ left (f \ right) $. If $ AB = BA $, a reversible array exists $ p $, make $ {P ^ {-1} AP, {P ^ {-1} BP $ up and down simultaneously

1

$ \ BF proposition: $

 

 

 

Topic discussion on Exchangeable Arrays

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.