Given a triangle, find the minimum path sum from top to bottom. each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3]]
The minimum path sum from top to bottom is11
(I. e., 2 + 3 + 5 + 1 = 11 ).
For typical ball Shortest Path problems, we need to use the idea of dynamic planning to find the minimum distance of each point from top to bottom.
int minimumTotal(vector<vector<int> > &triangle) { int nSize = triangle.size(); if (nSize<1) return 0; vector<int> sums(nSize); vector<int> tmps(nSize); sums[0] = triangle[0][0]; for (int i = 1; i < nSize; i++) { vector<int> vals = triangle[i]; int nNum = vals.size(); tmps = sums; sums[0] = tmps[0] + vals[0]; for (int j=1; j<i; j++) { sums[j] = tmps[j-1]>tmps[j]?tmps[j]+vals[j]:tmps[j-1]+vals[j]; } sums[i] = tmps[i-1]+vals[i]; } int nMin = sums[0]; for (int i = 1; i < nSize; i++) { if (sums[i] < nMin) nMin = sums[i]; } return nMin; }
Triangle --- calculate the minimum value from top to bottom