Basic Relationship Between trigonometric functions of the same angle |
Reciprocal Relationship: |
Business Relationship: |
Square relationship: |
Tan α-cot α = 1 |
|
Sin2 α + cos2 α = 1 1 + tan2 α = sec2 α 1 + cot2 α = |
|
|
Induction Formula |
Sin (-α) =-sin α |
Cos (-α) = cos α |
Tan (-α) =-tan α |
Cot (-α) =-cot α |
|
|
Sin (π/2-α) = cos α Cos (π/2-α) = sin α Tan (π/2-α) = cot α Cot (π/2-α) = tan α Sin (π/2 + α) = cos α Cos (π/2 + α) =-sin α Tan (π/2 + α) =-cot α Cot (π/2 + α) =-tan α |
Sin (π-α) = sin α Cos (π-α) =-Cos α Tan (π-α) =-tan α Cot (π-α) =-cot α Sin (π + α) =-sin α Cos (π + α) =-Cos α Tan (π + α) = tan α Cot (π + α) = cot α |
Sin (3 π/2-α) =-Cos α Cos (3 π/2-α) =-sin α Tan (3 π/2-α) = cot α Cot (3 π/2-α) = tan α Sin (3 π/2 + α) =-Cos α Cos (3 π/2 + α) = sin α Tan (3 π/2 + α) =-cot α Cot (3 π/2 + α) =-tan α |
Sin (2 π-α) =-sin α Cos (2 π-α) = cos α Tan (2 π-α) =-tan α Cot (2 π-α) =-cot α Sin (2 k π + α) = sin α Cos (2 k π + α) = cos α Tan (2 k π + α) = tan α Cot (2 k π + α) = cot α (K, Z) |
|
Trigonometric formula of two angles and Difference |
Universal Formula |
Sin (α + β) = sin α cos β + cos α sin β Sin (α-β) = sin α cos β-Cos α sin β Cos (α + β) = cos α cos β-sin α sin β Cos (α-β) = cos α cos β + sin α sin β Tan α + Tan β Tan (α + β) = ------ 1-tan α-tan β Tan α-tan β Tan (α-β) = ------ 1 + Tan α-tan β |
2tan (α/2) Sin α = ------ 1 + tan2 (α/2) 1-tan2 (α/2) Cos α = ------ 1 + tan2 (α/2) 2tan (α/2) Tan α = ------ 1-tan2 (α/2) |
|
Sine, cosine, and positive tangent formula of the half angle |
Power-Down Formula of trigonometric function |
|
|
|
|
Returns the sine, cosine, and tangent of the double angle. |
Sine, cosine, and positive tangent formula with a triple Angle |
Sin2 α = 2sin α cos α Cos2 α = cos2 α-sin2 α = 2cos2 α-1 = 1-2sin2 α 2tanα Tan2 α = ----- 1-tan2 α |
Sin3 α = 3sin α-4sin3 α Cos3 α = 4cos3 α-3cos α 3tan α-tan3α Tan3 α = ------ 1-3tan2 α |
|
|
Sum-difference product formula of trigonometric Functions |
Product and difference formulas of trigonometric Functions |
α + βα-β Sin α + sin β = 2sin --- · cos --- 2 2 α + βα-β Sin α-Sin β = 2cos --- · sin --- 2 2 α + βα-β Cos α + cos β = 2cos --- · cos --- 2 2 α + βα-β Cos α-Cos β =-2sin --- · sin --- 2 2 |
1 Sin α-Cos β =-[sin (α + β) + sin (α-β)] 2 1 Cos α-Sin β =-[sin (α + β)-sin (α-β)] 2 1 Cos α-Cos β =-[cos (α + β) + cos (α-β)] 2 1 Sin α-Sin β =-[cos (α + β)-cos (α-β)] 2 |
|
Convert asin α ± bcos α into a form of trigonometric function of an angle (the formula of the trigonometric function of the auxiliary angle) |
|