Test instructions: N kinds of goods, each item to different people have different value, there are three candidates, the first for ordinary students, the second is set, the third is to pray, set and pray can choose the same, and will get extra points, set and pray for the general students are unable to choose, ask three how to choose to make the highest total score.
Solution: First set and save to an array sum, and then you can enumerate the ordinary students choose which, and then on the left and right of sum to find a maximum value, update maxi, and then consider the different sets of the case, that is, the set of the array to take the maximum value, and on both sides of the prayer array to take a maximum value, Add, if the maximum value of the set and the maximum value is a mark, we in the previous sum maximum has been updated maxi, so no bonus is certainly smaller than the sum, so directly find the maximum value of two array is OK.
The maximum value of the interval can be RMQ or segment tree.
Code:
#include <iostream>#include<cstdio>#include<cstring>#include<cstdlib>#include<cmath>#include<algorithm>using namespacestd;#defineN 10017intdsum[n][ -],dji[n][ -],dqi[n][ -];intsum[n],ji[n],qi[n],pu[n],log[n+7000];voidRmq_init (intm) { inti,j; for(i=1; i<=m;i++) {dsum[i][0] =Sum[i]; dji[i][0] =Ji[i]; dqi[i][0] =Qi[i]; } for(j=1;(1<<J) <=m;j++) { for(i=1; i+ (1<<J)-1<=m;i++) {Dsum[i][j]= Max (dsum[i][j-1],dsum[i+ (1<< (J-1))][j-1]); DJI[I][J]= Max (dji[i][j-1],dji[i+ (1<< (J-1))][j-1]); DQI[I][J]= Max (dqi[i][j-1],dqi[i+ (1<< (J-1))][j-1]); } }}voidGetLog (intN) { for(intI=0; i<=n;i++) Log[i]= (int) (Log (Double) i)/log (2.0));}intRMQ (int(*d) [ -],intLintR) { if(R < L)return 0; intK = log[r-l+1]; returnMax (d[l][k],d[r-(1<<K) +1][k]);}intMain () {intT,i,j,n; scanf ("%d",&t); GetLog (15000); while(t--) {scanf ("%d",&N); for(i=1; i<=n;i++) scanf ("%d",&Pu[i]); for(i=1; i<=n;i++) scanf ("%d",&Ji[i]); for(i=1; i<=n;i++) scanf ("%d",&Qi[i]); for(i=1; i<=n;i++) scanf ("%d", &sum[i]), sum[i] + = ji[i]+Qi[i]; Rmq_init (n); intMaxi =0; for(i=1; i<=n;i++) { intNormal =Pu[i]; intSumleft = RMQ (DSum,1, I-1); intSumright = RMQ (dsum,i+1, N); Maxi= Max (maxi,normal+Max (sumleft,sumright)); intMaxji = max (RMQ (DJI,1, I-1), RMQ (dji,i+1, N)); intMaxqi = Max (RMQ (Dqi,1, I-1), RMQ (dqi,i+1, N)); Maxi= Max (maxi,normal+maxji+Maxqi); } cout<<Maxi<<Endl; } return 0;}
View Code
UESTC 764 lost Christmas--rmq/line tree