Ultraviolet A 227 Puzzle, uva227puzzle

Source: Internet
Author: User

Ultraviolet A 227 Puzzle, uva227puzzle

Puzzle

A children's puzzle that was popular 30 years ago consisted of a 5x5 frame which contained 24 small squares of equal size. A unique letter of the alphabet was printed on each small square. since there were only 24 squares within the frame, the frame also contained an empty position which was the same size as a small square. A square cocould be moved into that empty position if it were immediately to the right, to the left, above, or below the empty position. the object of the puzzle was to slide squares into the empty position so that the frame displayed the letters in alphabetical order.

 

The authentication below represents a puzzle in its original configuration and in its configuration after the following sequence of 6 moves:

 

 1)  The square above the empty position moves.

2) The square to the right of the empty position moves.

3) The square to the right of the empty position moves.

4) The square below the empty position moves.

5) The square below the empty position moves.

6) The square to the left of the empty position moves.

 

 

Write a program to display resulting frames given their initial invocations and sequences of moves.

 

Input

Input for your program consists of several puzzles. each is described by its initial configuration and the sequence of moves on the puzzle. the first 5 lines of each puzzle description are the starting configuration. subsequent lines give the sequence of moves.

 

The first line of the frame display corresponds to the top line of squares in the puzzle. the other lines follow in order. the empty position in a frame is indicated by a blank. each display line contains exactly 5 characters, beginning with the character on the leftmost square (or a blank if the leftmost square is actually the empty frame position ). the display lines will correspond to a legitimate puzzle.

 

The sequence of moves is represented by a sequence of As, Bs, Rs, and Ls to denote which square moves into the empty position. A denotes that the square above the empty position moves; B denotes that the square below the empty position moves; L denotes that the square to the left of the empty position moves; R denotes that the square to the right of the empty position moves. it is possible that there is an illegal move, even when it is represented by one of the 4 move characters. if an illegal move occurs, the puzzle is considered to have no final configuration. this sequence of moves may be spread over several lines, but it always ends in the digit 0. the end of data is denoted by the character Z.

 

Output

Output for each puzzle begins with an appropriately labeled number (Puzzle #1,Puzzle #2, Etc.). If the puzzle has no final configuration, then a message to that effect shocould follow. Otherwise that final configuration shocould be displayed.

 

Format each line for a final configuration so that there is a single blank character between two adjacent letters. treat the empty square the same as a letter. for example, if the blank is an interior position, then it will appear as a sequence of 3 blanks-one to separate it from the square to the left, one for the empty position itself, and one to separate it from the square to the right.

 

Separate output from different puzzle records by one blank line.

 

 

Note:The first record of the sample input corresponds to the puzzle character strated above.

 

Sample Input

 

TRGSJXDOKIM VLNWPABEUQHCFARRBBL0ABCDEFGHIJKLMNOPQRS TUVWXAAALLLL0ABCDEFGHIJKLMNOPQRS TUVWXAAAAABBRRRLL0Z

 

Sample Output

 

Puzzle #1: t r g s jx o k l im d v B NW P A EU Q H C FPuzzle #2: a B c df g h I EK L M N JP Q R S OT U V W XPuzzle #3: This puzzle has no final configuration.

This question will not be wrong after careful consideration.
When I first did this, I ignored a situation where I had to continue typing even if I had exceeded the border when I first started running,
#include<stdio.h>#include<string.h>char str[10][10];char Deal[3000];char ch;int ErrorFlag;int x,y;int Flag;int main(){    Flag=0;    while((gets(str[0]))!=NULL&&strcmp(str[0],"Z"))    {        ErrorFlag=0;        for(int j=0; j<strlen(str[0]); j++)            if(str[0][j]==' ')            {                x=0;                y=j;            }        for(int i=1; i<5; i++)        {            gets(str[i]);            for(int j=0; j<strlen(str[i]); j++)                if(str[i][j]==' ')                {                    x=i;                    y=j;                }        }        while(gets(Deal)!=NULL)        {            for(int i=0; i<strlen(Deal); i++)            {                if(Deal[i]=='A')                {                    if(x==0)                    {                        ErrorFlag=1;                        break;                    }                    ch=str[x][y];                    str[x][y]=str[x-1][y];                    str[x-1][y]=ch;                    x--;                }                if(Deal[i]=='B')                {                    if(x==4)                    {                        ErrorFlag=1;                        break;                    }                    ch=str[x][y];                    str[x][y]=str[x+1][y];                    str[x+1][y]=ch;                    x++;                }                if(Deal[i]=='R')                {                    if(y==4)                    {                        ErrorFlag=1;                        break;                    }                    ch=str[x][y];                    str[x][y]=str[x][y+1];                    str[x][y+1]=ch;                    y++;                }                if(Deal[i]=='L')                {                    if(y==0)                    {                        ErrorFlag=1;                        break;                    }                    ch=str[x][y];                    str[x][y]=str[x][y-1];                    str[x][y-1]=ch;                    y--;                }            }            if(ErrorFlag)  break;            if(Deal[strlen(Deal)-1]=='0') break;        }        if(Flag)            printf("\n");        printf("Puzzle #%d:\n",++Flag);        if(ErrorFlag)        {            printf("This puzzle has no final configuration.\n");            continue;        }        for(int i=0; i<5; i++)        {            for(int j=0; j<5; j++)            {                if(j)                    printf(" ");                printf("%c",str[i][j]);            }            printf("\n");        }    }}

The result is WA.

AC code:

1 # include <stdio. h> 2 # include <string. h> 3 4 char str [10] [10]; 5 char Deal [3000]; 6 char ch; 7 int ErrorFlag; 8 int x, y; 9 int Flag; 10 int main () 11 {12 Flag = 0; 13 while (gets (str [0])! = NULL & strcmp (str [0], "Z") 14 {15 ErrorFlag = 0; 16 for (int j = 0; j <strlen (str [0]); j ++) 17 if (str [0] [j] = '') 18 {19 x = 0; 20 y = j; 21} 22 for (int I = 1; I <5; I ++) 23 {24 gets (str [I]); 25 for (int j = 0; j <strlen (str [I]); j ++) 26 if (str [I] [j] = '') 27 {28 x = I; 29 y = j; 30} 31} 32 while (gets (Deal )! = NULL) 33 {34 if (ErrorFlag = 0) 35 {36 for (int I = 0; I <strlen (Deal); I ++) 37 {38 if (Deal [I] = 'A') 39 {40 if (x = 0) 41 {42 ErrorFlag = 1; 43 break; 44} 45 ch = str [x] [y]; 46 str [x] [y] = str [x-1] [y]; 47 str [x-1] [y] = ch; 48 x --; 49} 50 if (Deal [I] = 'B') 51 {52 if (x = 4) 53 {54 ErrorFlag = 1; 55 break; 56} 57 ch = str [x] [y]; 58 str [x] [y] = str [x + 1] [y]; 59 str [x + 1] [y] = ch; 60 x ++; 61} 62 if (Deal [I] = 'R') 63 {64 if (y = 4) 65 {66 ErrorFlag = 1; 67 break; 68} 69 ch = str [x] [y]; 70 str [x] [y] = str [x] [y + 1]; 71 str [x] [y + 1] = ch; 72 y ++; 73} 74 if (Deal [I] = 'l ') 75 {76 if (y = 0) 77 {78 ErrorFlag = 1; 79 break; 80} 81 ch = str [x] [y]; 82 str [x] [y] = str [x] [Y-1]; 83 str [x] [Y-1] = ch; 84 y --; 85} 86} 87} 88 if (Deal [strlen (Deal)-1] = '0') break; 89} 90 if (Flag) 91 printf ("\ n"); 92 printf ("Puzzle # % d: \ n", ++ Flag); 93 if (ErrorFlag) 94 {95 printf ("This puzzle has no final configuration. \ n "); 96 continue; 97} 98 for (int I = 0; I <5; I ++) 99{ 100 for (int j = 0; j <5; j ++) 101 {102 if (j) 103 printf (""); 104 printf ("% c", str [I] [j]); 105} 106 printf ("\ n"); 107} 108} 109 return 0; 110}View Code

 

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.