Topic Links:
Matrix decompressing
Test instructions
Give a matrix of each row and each column of the and, (given is the first row or column of the and);
The value of each element in the matrix is between 1 and 20 to find such a matrix;
Ideas:
Turn it into a two-point diagram, an arc is connected between each row and column, then a source point and a sink point are attached, the source point is connected to the row point, the sink point is connected to the column point, and the maximum value is, of course, the largest stream with the lower bound, which needs to be handled by 1, while the edges connected to the Yuanhui are processed; 1 is the answer;
AC Code:
#include <bits/stdc++.h>/*#include <iostream> #include <queue> #include <cmath> #include <cstring> #include < algorithm> #include <cstdio>*/using namespacestd;#defineRiep (n) for (int i=1;i<=n;i++)#defineRIOP (n) for (int i=0;i<n;i++)#defineRJEP (n) for (int j=1;j<=n;j++)#defineRJOP (n) for (int j=0;j<n;j++)#defineMST (SS,B) memset (ss,b,sizeof (ss));typedefLong LongLL;ConstLL mod=1e9+7;Const DoublePi=acos (-1.0);Const intinf=0x3f3f3f3f;Const intn=1e5+ -;intn,m,a[ $],b[ $],cap[ $][ $],path[ $],flow[ $];queue<int>Qu;intBFS () {MST (path,-1); flow[0]=inf; path[0]=0; Qu.push (0); while(!Qu.empty ()) { intFr=Qu.front (); Qu.pop (); for(intI=1; i<=n+m+1; i++) { if(path[i]==-1&&Cap[fr][i]) {Flow[i]=min (Cap[fr][i],flow[fr]); Path[i]=fr; Qu.push (i); } } } if(path[n+m+1]==-1)return-1; returnflow[n+m+1];}voidMaxflow () {intNow,pre; while(1) { inttemp=BFS (); if(temp==-1) Break; now=n+m+1; while(now!=0) {Pre=Path[now]; Cap[pre][now]-=temp; Cap[now][pre]+=temp; now=Pre; } }}intMain () {intT,case=1; scanf ("%d",&t); while(case<=t) {MST (Cap,0); scanf ("%d%d",&n,&m); Riep (n) scanf ("%d",&A[i]); Riep (n) {cap[0][i]=a[i]-a[i-1]-m; } Riep (M) scanf ("%d",&B[i]); Riep (m) {cap[i+n][n+m+1]=b[i]-b[i-1]-N; } for(intI=1; i<=n;i++) for(intj=1; j<=m;j++) Cap[i][j+n]= +; Maxflow (); printf ("Matrix%d\n", case++); Riep (n) {Rjep (M-1) printf ("%d", cap[j+n][i]+1); printf ("%d\n", cap[m+n][i]+1); } printf ("\ n"); } return 0;}
UVA-11082 Matrix decompressing (maximum flow with upper and lower bounds)