The main topic: There are N teams to play, each team need to hit the same number of games, each game just have a team win, a team defeated, give each team the current number of wins and the number of defeats, as well as the remaining number of each team of matches, to determine all possible champions of the team
How to solve the problem: enumerate each team and let the team win all the next races.
If you build a map, it's simpler, and the source point is connected to each game and the capacity is the number of games.
Each match to match the team, capacity for the number of games
Then each team connects to the meeting point, and the capacity is the total winning field of the enumeration team-the winning field of the team
If full, it means the team can get the championship.
#include <cstdio>#include <cstring>#include <algorithm>#include <queue>using namespace STD;#define M 1000010#define N 10010#define INF 0x3f3f3f3fstructedge{intU, V, cap, flow, next;} E[M];structdinic{intHead[n], d[n];intTot, sink, source;voidInit () {memset(Head,-1,sizeof(head)); tot =0; }inline voidAddedge (intUintVintCAP) {e[tot].u = u; E[TOT].V = v; E[tot].cap = cap; E[tot].flow =0; E[tot].next = Head[u]; Head[u] = tot++; u = u ^ v; v = u ^ v; u = u ^ v; e[tot].u = u; E[TOT].V = v; E[tot].cap =0; E[tot].flow =0; E[tot].next = Head[u]; Head[u] = tot++; }inline BOOLBFsints) {intU, v;memset(d,0,sizeof(d)); Queue<int>Q; Q.push (s); D[s] =1; while(! Q.empty ()) {u = Q.front (); Q.pop ();if(U = = sink)return true; for(inti = Head[u]; ~i; i = e[i].next) {v = e[i].v;if(!d[v] && e[i].cap-e[i].flow >0) {D[v] = D[u] +1; Q.push (v); } } }return false; }intDfsintXintA) {if(x = = Sink | | a = =0)returnAintF, Flow =0; for(inti = head[x]; ~i; i = e[i].next) {intv = e[i].v;if(D[v] = = D[x] +1&& E[i].cap-e[i].flow >0) {f = Dfs (V, min (A, e[i].cap-e[i].flow)); E[i].flow + = f; e[i^1].flow-= f; Flow + + F; A-= f;if(!a) Break; } }if(Flow = =0) D[x] =0;returnFlow }intMaxflow (intSourceintSink) {intFlow =0; This->sink = sink; while(BFS (source)) Flow + = DFS (source, INF);returnFlow }};D inic dinic;#define MAXNintNintWIN[MAXN], FIGHT[MAXN][MAXN], all, Max;voidInit () {scanf("%d", &n); all =0; Max =-inf;intT for(inti =1; I <= N; i++) {scanf("%d%d", &win[i], &t); max = max (max, win[i]);if(i = =1) All + = Win[i] + t; } for(inti =1; I <= N; i++) for(intj =1; J <= N; J + +) {scanf("%d", &fight[i][j]);if(i = =1) All + = Fight[i][j]; }}voidSolve () {BOOLFlag =false;intTotal, Source =0, sink = N-1, CNT; for(inti =1; I <= N; i++) {total = Win[i]; for(intj =1; J <= N; J + +) Total + = Fight[i][j];if(Total < Max)Continue; CNT = n +1; Dinic.init ();intSum =0; for(intj =1; J <= N; J + +) {if(J! = i) dinic. Addedge (J, Sink, Total-win[j]); for(intK = j +1; K <= N; k++) {if(j = = I | | k = = i)Continue; Dinic. Addedge (source, CNT, fight[j][k]); Sum + = Fight[j][k]; Dinic. Addedge (CNT, J, Fight[j][k]); Dinic. Addedge (cnt++, K, fight[j][k]); } }intMaxflow = Dinic. Maxflow (source, sink);if(Maxflow = = Sum) {if(flag)printf(" "); Flag =true;printf("%d", i); } }printf("\ n");}intMain () {intTestscanf("%d", &test); while(test--) {init (); Solve (); }return 0;}
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
UVALive-2531 the K-league (Max Stream + enumeration)