| Function |
Derived equivalent Formula |
| Secant (CUT) |
Sec (X) = 1/Cos (X) |
| Cosecant (remainder) |
Cosec (X) = 1/Sin (X) |
| Cotangent (Cotangent) |
Cotan (X) = 1/Tan (X) |
| Inverse Sine (arcsin) |
Arcsin (X) = Atn (X/Sqr (-X * X + 1 )) |
| Inverse Cosine (arccosine) |
Arccos (X) = Atn (-X/Sqr (-X * X + 1) + 2 * Atn (1) |
| Inverse Secant (Arc cut) |
Arcsec (X) = Atn (X/Sqr (X * X-1) + Sgn (X)-1) * (2 * Atn (1 )) |
| Inverse Cosecant (Anti-remainder) |
Arccosec (X) = Atn (X/Sqr (X * X-1) + (Sgn (X)-1) * (2 * Atn (1 )) |
| Inverse Cotangent (Reverse tangent) |
Arccotan (X) = Atn (X) + 2 * Atn (1) |
| Hyperbolic Sine (Hyperbolic Sine) |
HSin (X) = (Exp (X)-Exp (-X)/2 |
| Hyperbolic Cosine (Hyperbolic Cosine) |
HCos (X) = (Exp (X) + Exp (-X)/2 |
| Hyperbolic Tangent (Hyperbolic Tangent) |
HTan (X) = (Exp (X)-Exp (-X)/(Exp (X) + Exp (-X )) |
| Hyperbolic Secant (Hyperbolic cut) |
HSec (X) = 2/(Exp (X) + Exp (-X )) |
| Hyperbolic Cosecant (Hyperbolic remainder) |
HCosec (X) = 2/(Exp (X)-Exp (-X )) |
| Hyperbolic Cotangent (Hyperbolic Cotangent) |
HCotan (X) = (Exp (X) + Exp (-X)/(Exp (X)-Exp (-X )) |
| Inverse Hyperbolic Sine (Inverse Hyperbolic Sine) |
HArcsin (X) = Log (X + Sqr (X * X + 1 )) |
| Inverse Hyperbolic Cosine (Inverse Hyperbolic Cosine) |
HArccos (X) = Log (X + Sqr (X * X-1 )) |
| Inverse Hyperbolic Tangent (Inverse Hyperbolic Tangent) |
HArctan (X) = Log (1 + X)/(1-X)/2 |
| Inverse Hyperbolic Secant (reverse Hyperbolic cut) |
HArcsec (X) = Log (Sqr (-X * X + 1) + 1)/X) |
| Inverse Hyperbolic Cosecant (reverse Hyperbolic remainder) |
HArccosec (X) = Log (Sgn (X) * Sqr (X * X + 1) + 1)/X) |
| Inverse Hyperbolic Cotangent (reverse Hyperbolic Cotangent) |
HArccotan (X) = Log (X + 1)/(X-1)/2 |
| Base-N logarithm |
LogN (X) = Log (X)/Log (N) |