標籤:style class blog code color strong
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0]]
題目大意
尋求最短路徑,從左上走到右下,保證每次只能往左走或往下走(不可以斜著走)。其中數字1是障礙,表示“此路不通”,求總共的路線數
思路
1. 如果沒有障礙
val[i][0] = 1
val[0][j] = 1
val[i][j] = val[i-1][j] + val[i][j-1]
2. 有了障礙後
如果obstacle[i][j] = 1
val[i][j] = 1
否則
tmp = obstacle[i-1][j] == 1 ? 0 : val[i-1][j]
tmp = obstacle[i][j-1] == 1 ? tmp : tmp + val[i-1][j-1]
val[i][j] = tmp
參考代碼
class Solution {public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int row = obstacleGrid.size(); int col = obstacleGrid[0].size(); int token = 1; int val[row][col]; for (int j = 0; j < col; ++j) { if(obstacleGrid[0][j] == 1) token = 0; val[0][j] = token; } token = 1; for (int i = 0; i < row; ++i) { if(obstacleGrid[i][0] == 1) token = 0; val[i][0] = token; } for (int i = 1; i < row; ++i) { for(int j = 1; j < col; ++j) { if (obstacleGrid[i][j] == 1) val[i][j] = 0; else { int tmp = obstacleGrid[i-1][j] == 1 ? 0 :val[i-1][j]; tmp = obstacleGrid[i][j-1] == 1 ? tmp : tmp + val[i][j-1]; val[i][j] = tmp; } } } return val[row-1][col-1]; }};