標籤:scanf space strong 移動 const 枚舉 51nod amp ns2
題意:
有一個n * m的矩形,一開始從(1, 1)開始,每次能夠到達右下方格子的一個格子,求到達(n, m)的方案數。
題解:
很顯然最多走min (n - 2, m - 2) + 1步,枚舉步數K,答案為 求和 C(n - 2, K - 1) * C(m - 2, K - 1)
代碼:
#include <bits/stdc++.h>using namespace std;const int mod = 1e9 + 7;const int N = 1e5 + 7;#define LL long longint n, m;LL F[N], ans;map <int, LL> inv;int Pow (int x, int cnt) {int ret = 1;while (cnt) {if (cnt & 1) ret = (LL) ret * x % mod;x = (LL) x * x % mod;cnt >>= 1;}return ret;}int main () {scanf ("%d%d", &n, &m);F[0] = 1, inv[0] = 1;for (int i = 1; i < N; ++i) {F[i] = F[i-1] * i % mod;inv[i] = Pow (F[i], mod - 2);} int lim = min (n - 2, m - 2);for (int i = 1; i <= lim + 1; ++i) {LL ans1 = F[n-2] * inv[i-1] % mod * inv[n-i-1] % mod;LL ans2 = F[m-2] * inv[i-1] % mod * inv[m-i-1] % mod;ans = (ans + ans1 * ans2 % mod) % mod;}cout << ans << endl;return 0;}
51nod 1627 瞬間移動