C++中排序的演算法分析(文字分析)

來源:互聯網
上載者:User
 而一般我們所謂的演算法的效能主要是指演算法的複雜度,一般用O方法來表示。在後面我將給出詳細的說明。
對於排序的演算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。
我將按照演算法的複雜度,從簡單到難來分析演算法。
第一部分是簡單排序演算法,後面你將看到他們的共同點是演算法複雜度為O(N*N)(因為沒有使用word,所以無法打出上標和下標)。
第二部分是進階排序演算法,複雜度為O(Log2(N))。這裡我們只介紹一種演算法。另外還有幾種演算法因為涉及樹與堆的概念,所以這裡不於討論。
第三部分類似動腦筋。這裡的兩種演算法並不是最好的(甚至有最慢的),但是演算法本身比較奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。
第四部分是我送給大家的一個餐後的甜點——一個基於模板的通用快速排序。由於是模板函數可以對任何資料類型排序(抱歉,裡面使用了一些論壇專家的呢稱)。

現在,讓我們開始吧:

一、簡單排序演算法
由於程式比較簡單,所以沒有加什麼注釋。所有的程式都給出了完整的運行代碼,並在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有協助。
1.冒泡法:
這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
迴圈次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
迴圈次數:6次
交換次數:3次
上面我們給出了程式段,現在我們分析它:這裡,影響我們演算法效能的主要部分是迴圈和交換,
顯然,次數越多,效能就越差。從上面的程式我們可以看出迴圈的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程式迴圈的複雜度為O(n*n)。
再看交換。從程式後面所跟的表可以看到,兩種情況的迴圈相同,交換不同。其實交換本身同資料來源的有序程度有極大的關係,當資料處於倒序的情況時,交換次數同迴圈一樣(每次迴圈判斷都會交換),複雜度為O(n*n)。當資料為正序,將不會有交換。複雜度為O(0)。亂序時處於中間狀態。正是由於這樣的原因,我們通常都是通過迴圈次數來對比演算法。

2.交換法:
交換法的程式最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
迴圈次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
迴圈次數:6次
交換次數:3次
從啟動並執行表格來看,交換幾乎和冒泡一樣糟。事實確實如此。迴圈次數和冒泡一樣也是1/2*(n-1)*n,所以演算法的複雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現在我們終於可以看到一點希望:選擇法,這種方法提高了一點效能(某些情況下)這種方法類似我們人為的排序習慣:從資料中選擇最小的同第一個值交換,在從省下的部分中選擇最小的與第二個交換,這樣往複下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
迴圈次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
迴圈次數:6次
交換次數:3次
遺憾的是演算法需要的迴圈次數依然是1/2*(n-1)*n。所以演算法複雜度為O(n*n)。
我們來看他的交換。由於每次外層迴圈只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在資料較亂的時候,可以減少一定的交換次數。

4.插入法:
插入法較為複雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(迴圈1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(迴圈2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(迴圈3次)
迴圈次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(迴圈1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(迴圈2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(迴圈1次)
迴圈次數:4次
交換次數:2次
上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是,
因為其迴圈次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,迴圈的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其複雜度仍為O(n*n)(這裡說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層迴圈相同次數的‘=’操作。正常的一次交換我們需要三次‘=’
而這裡顯然多了一些,所以我們浪費了時間。
最終,我個人認為,在簡單排序演算法中,選擇法是最好的。

二、進階排序演算法:
進階排序演算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程式中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞迴)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞迴左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞迴右半邊
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
這裡我沒有給出行為的分析,因為這個很簡單,我們直接來分析演算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞迴,迴圈n次,第二層迴圈2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以演算法複雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞迴,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)演算法,但是通常情況下速度要慢於快速排序(因為要重組堆)。
三、其他排序
1.雙向冒泡:
通常的冒泡是單向的,而這裡是雙向的,也就是說還要進行反向的工作。
代碼看起來複雜,仔細理一下就明白了,是一個來回震蕩的方式。
寫這段代碼的作者認為這樣可以在冒泡的基礎上減少一些交換(我不這麼認為,也許我錯了)。
反正我認為這是一段有趣的代碼,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
2.SHELL排序
這個排序非常複雜,看了程式就知道了。
首先需要一個遞減的步長,這裡我們使用的是9、5、3、1(最後的步長必須是1)。
工作原理是首先對相隔9-1個元素的所有內容排序,然後再使用同樣的方法對相隔5-1個元素的排序
以次類推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step個元素的下標
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
呵呵,程式看起來有些頭疼。不過也不是很難,把s==0的塊去掉就輕鬆多了,這裡是避免使用0
步長造成程式異常而寫的代碼。這個代碼我認為很值得一看。
這個演算法的得名是因為其發明者的名字D.L.SHELL。依照參考資料上的說法:“由於複雜的數學原因
避免使用2的冪次步長,它能降低演算法效率。”另外演算法的複雜度為n的1.2次冪。同樣因為非常複雜並
“超出本書討論範圍”的原因(我也不知道過程),我們只有結果了。

四、基於模板的通用排序:
這個程式我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h檔案
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//這裡重載了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////
MyData.cpp檔案
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//主程式部分
#include <iostream.h>
#include "MyData.h"
template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比較都調用我們重載的操作符函數
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞迴左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞迴右半邊
if(right>i)
run(pData,i,right);
}
template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,"xulion"),
CMyData(7,"sanzoo"),
CMyData(6,"wangjun"),
CMyData(5,"VCKBASE"),
CMyData(4,"jacky2000"),
CMyData(3,"cwally"),
CMyData(2,"VCUSER"),
CMyData(1,"isdong")
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"/n";
cout<<"/n";

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.