Android提供了一個名為meminfo的小工具協助應用分析自身的記憶體佔用,並且在4.4還新增了memtrack HAL模組,SoC廠商通過實現memtrack模組,讓meminfo可以擷取GPU相關的一些記憶體配置狀況。瞭解meminfo的實現,對我們更深入瞭解應用的記憶體佔用狀況是很有協助的。而這篇文章的目的就是分析Android 4.4 meminfo的內部實現源碼,讓開發人員通過這些資訊可以更瞭解自己應用的記憶體佔用狀況。
在控制台輸入命令"adb shell dumpsys meminfo YOUR-PACKAGE-NAME",可以看到類似的結果:
** MEMINFO in pid 14120 [com.UCMobile.test] ** Pss Private Private Swapped Heap Heap Heap Total Dirty Clean Dirty Size Alloc Free ------ ------ ------ ------ ------ ------ ------ Native Heap 187886 187872 0 0 325232 174093 38594 Dalvik Heap 24801 24444 0 0 41476 35899 5577 Dalvik Other 700 700 0 0 Stack 508 508 0 0 Other dev 33564 32600 4 0 .so mmap 9019 1244 7268 0 .apk mmap 101 0 16 0 .ttf mmap 1330 0 696 0 .dex mmap 2248 0 2248 0 code mmap 985 0 188 0 image mmap 1182 908 12 0 Other mmap 130 4 108 0 Graphics 25504 25504 0 0 GL 2196 2196 0 0 Unknown 32476 32476 0 0 TOTAL 322630 308456 10540 0 366708 209992 44171
實際的調用代碼入口在android.os.Debug.java和對應的CPP檔案android_os_Debug.cpp,Debug.java的getMeminfo方法實際上調用了android_os_Debug.cpp的android_os_Debug_getDirtyPagesPid方法。
static void android_os_Debug_getDirtyPagesPid(JNIEnv *env, jobject clazz, jint pid, jobject object){ stats_t stats[_NUM_HEAP]; memset(&stats, 0, sizeof(stats)); load_maps(pid, stats); struct graphics_memory_pss graphics_mem; if (read_memtrack_memory(pid, &graphics_mem) == 0) { ... } ...}static void load_maps(int pid, stats_t* stats){ char tmp[128]; FILE *fp; sprintf(tmp, "/proc/%d/smaps", pid); fp = fopen(tmp, "r"); if (fp == 0) return; read_mapinfo(fp, stats); fclose(fp);}
從上面的代碼可以看到,android_os_Debug_getDirtyPagesPid方法先調用了load_maps方法,而load_maps方法要做的事情也很簡單,它開啟/proc/PID/smaps虛擬檔案,讀取裡面的資訊,在已ROOT的裝置上,我們可以通過“adb shell cat /proce/PID/smaps”直接將這個虛擬檔案的資訊列印在控制台上。
80ff5000-810f2000 rw-p 00000000 00:00 0 [stack:12211]Size: 1012 kBRss: 4 kBPss: 4 kB...81100000-811a4000 rw-s 000f4000 00:0b 6285 /dev/kgsl-3d0Size: 656 kBRss: 652 kBPss: 352 kB...811d1000-811e0000 rw-p 00000000 00:00 0 [anon:libc_malloc]Size: 60 kBRss: 60 kBPss: 60 kB...Name: [anon:libc_malloc]
“adb shell cat /proce/PID/smaps”輸出的資訊如所示,它實際上是應用的userspace地址空間的記憶體配置表,記錄了應用程式指派的每一塊記憶體的地址,類別,大小等資訊,而load_maps方法調用read_mapinfo方法從這個表裡面讀出每一塊記憶體的分配資訊,分類進行累加,得出Native Heap,Dalvik Heap等各個類別的記憶體佔用。
但是應用所使用的全部記憶體裡面,有一些記憶體塊是不映射到進程的userspace地址空間的(主要是GPU所使用的記憶體),這些記憶體塊的資訊在smaps裡面無法找到,所以在Android 4.4裡面新增了一個memtrack的HAL模組由SoC廠商實現,如果SoC廠商實現了memtrack模組,meminfo則可以通過libmemtrack的調用擷取一些跟GPU相關的記憶體使用量資訊。所以我們看到android_os_Debug_getDirtyPagesPid方法通過調用read_memtrack_memory方法來讀取Graphics,GL這兩項的記憶體使用量資訊。
/* * Uses libmemtrack to retrieve graphics memory that the process is using. * Any graphics memory reported in /proc/pid/smaps is not included here. */static int read_memtrack_memory(struct memtrack_proc* p, int pid, struct graphics_memory_pss* graphics_mem){ int err = memtrack_proc_get(p, pid); ... ssize_t pss = memtrack_proc_graphics_pss(p); ... graphics_mem->graphics = pss / 1024; pss = memtrack_proc_gl_pss(p); ... graphics_mem->gl = pss / 1024; pss = memtrack_proc_other_pss(p); ... graphics_mem->other = pss / 1024; return 0;}
read_memtrack_memory方法的實現如所示,它讀取了Graphics,GL,Other這三類記憶體資訊,而這三個類別的定義在hardware/memtrack.h裡面。
/* * The Memory Tracker HAL is designed to return information about device-specific * memory usage. The primary goal is to be able to track memory that is not * trackable in any other way, for example texture memory that is allocated by * a process, but not mapped in to that process' address space. * A secondary goal is to be able to categorize memory used by a process into * GL, graphics, etc. All memory sizes should be in real memory usage, * accounting for stride, bit depth, rounding up to page size, etc. * * A process collecting memory statistics will call getMemory for each * combination of pid and memory type. For each memory type that it recognizes * the HAL should fill out an array of memtrack_record structures breaking * down the statistics of that memory type as much as possible. For example, * getMemory(, MEMTRACK_TYPE_GL) might return: * { { 4096, ACCOUNTED | PRIVATE | SYSTEM }, * { 40960, UNACCOUNTED | PRIVATE | SYSTEM }, * { 8192, ACCOUNTED | PRIVATE | DEDICATED }, * { 8192, UNACCOUNTED | PRIVATE | DEDICATED } } * If the HAL could not differentiate between SYSTEM and DEDICATED memory, it * could return: * { { 12288, ACCOUNTED | PRIVATE }, * { 49152, UNACCOUNTED | PRIVATE } } * * Memory should not overlap between types. For example, a graphics buffer * that has been mapped into the GPU as a surface should show up when * MEMTRACK_TYPE_GRAPHICS is requested, and not when MEMTRACK_TYPE_GL * is requested. */enum memtrack_type { MEMTRACK_TYPE_OTHER = 0, MEMTRACK_TYPE_GL = 1, MEMTRACK_TYPE_GRAPHICS = 2, MEMTRACK_TYPE_MULTIMEDIA = 3, MEMTRACK_TYPE_CAMERA = 4, MEMTRACK_NUM_TYPES,};
Graphics對應了MEMTRACK_TYPE_GRAPHICS,GL對應了MEMTRACK_TYPE_GL,而Other實際上是MEMTRACK_TYPE_OTHER,MEMTRACK_TYPE_MULTIMEDIA,MEMTRACK_TYPE_CAMERA這三項之和。memtrack是由SoC廠商實現的,在AOSP的源碼裡面我們可以找到高通的實現源碼,在msm8974/libmemtrack/kgsl.c裡面。
int kgsl_memtrack_get_memory(pid_t pid, enum memtrack_type type, struct memtrack_record *records, size_t *num_records){ ... sprintf(tmp, "/d/kgsl/proc/%d/mem", pid); fp = fopen(tmp, "r"); ... if (type == MEMTRACK_TYPE_GL) { sprintf(tmp, "/proc/%d/smaps", pid); smaps_fp = fopen(tmp, "r"); ... } while (1) { unsigned long uaddr; unsigned long size; char line_type[7]; int ret; if (fgets(line, sizeof(line), fp) == NULL) { break; } /* Format: * gpuaddr useraddr size id flags type usage sglen * 545ba000 545ba000 4096 1 ----p gpumem arraybuffer 1 */ ret = sscanf(line, "%*x %lx %lu %*d %*s %6s %*s %*d\n", &uaddr, &size, line_type); if (ret != 3) { continue; } if (type == MEMTRACK_TYPE_GL && strcmp(line_type, "gpumem") == 0) { bool accounted = false; /* * We need to cross reference the user address against smaps, * luckily both are sorted. */ while (smaps_addr <= uaddr) { unsigned long start; unsigned long end; unsigned long smaps_size; if (fgets(line, sizeof(line), smaps_fp) == NULL) { break; } if (sscanf(line, "%8lx-%8lx", &start, &end) == 2) { smaps_addr = start; continue; } if (smaps_addr != uaddr) { continue; } if (sscanf(line, "Rss: %lu kB", &smaps_size) == 1) { if (smaps_size) { accounted = true; accounted_size += size; break; } } } if (!accounted) { unaccounted_size += size; } } else if (type == MEMTRACK_TYPE_GRAPHICS && strcmp(line_type, "ion") == 0) { unaccounted_size += size; } } ...}
kgsl_memtrack_get_memory是memtrack的getMemory方法的具體實現,我們可以看到它實際上是讀取一張內部的GPU記憶體配置表的資訊(虛擬檔案/d/kgsl/proc/PID/mem),在已ROOT的裝置上,我們可以通過“adb shell cat /d/kgsl/proc/PID/mem”將這張記憶體配置表的資訊列印到控制台上,如所示:
gpuaddr useraddr size id flags type usage sglen7565e000 00000000 4096 1 ----p gpumem arraybuffer 1756bc000 00000000 65536 2 -r--p gpumem command 16756cd000 00000000 65536 3 -r--p gpumem command 16756de000 00000000 65536 4 -r--p gpumem command 16756fb000 00000000 4096 5 ----p gpumem gl 175fe2000 00000000 262144 6 ----p gpumem gl 6476023000 00000000 8192 7 ----p gpumem gl 276026000 00000000 8192 8 ----p gpumem gl 276029000 00000000 4096 9 ----p gpumem texture 1...94d71000 00000000 131072 362 ----p gpumem vertexarraybuff 3294da0000 00000000 667648 176 --l-p gpumem texture 16394e44000 00000000 131072 363 ----p gpumem any(0) 3294e65000 00000000 131072 364 ----p gpumem any(0) 32c0000000 00000000 17268736 31 --L-- ion egl_image 4216c1100000 00000000 8257536 36 --L-- ion egl_surface 21c1900000 00000000 8257536 164 --L-- ion egl_surface 21c2100000 00000000 8257536 175 --L-- ion egl_surface 21
其中ion類型(由ION記憶體 Clerk分配的記憶體)的記憶體塊統計到Graphics類別裡面,從我們可以看到有三塊egl_surface,它們對應應用所使用的視窗的三個Buffer,還有一個egl_image暫時不清楚用途(這塊17M的egl_image,在不同進程裡面的地址和ID號都是一樣的,所以猜測實際是Android在不同應用之間分享的Assert Atlas,Android 4.4開始,把系統的圖片資源拼接成一大塊紋理,然後通過GraphicBuffer + EGLImage在不同的應用之間共用),這些都是應用啟動後Android自動分配的。gpumem類型的記憶體塊統計到GL類別裡面,包括GL裡面的紋理(texture),各種shader,vertex buffer等等。另外,因為有些記憶體區塊對應到了userspace,有些則沒有映射,所以映射到userspace的記憶體塊會被標記為accounted,避免meminfo重複計數,meminfo最終顯示的Graphics和GL的記憶體值是哪些沒有映射到userspace的記憶體塊的大小之和。