標籤:blog http io os 使用 ar java for 檔案
一、安裝Eclipse
下載Eclipse,解壓安裝,例如安裝到/usr/local,即/usr/local/eclipse
4.3.1版本:http://pan.baidu.com/s/1eQkpRgu
二、在eclipse上安裝hadoop外掛程式
1、下載hadoop外掛程式
:http://pan.baidu.com/s/1mgiHFok
此zip檔案包含了源碼,我們使用使用編譯好的jar即可,解壓後,release檔案夾中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是編譯好的外掛程式。
2、把外掛程式放到eclipse/plugins目錄下
3、重啟eclipse,配置Hadoop installation directory
如果外掛程式安裝成功,開啟Windows—Preferences後,在視窗左側會有Hadoop Map/Reduce選項,點擊此選項,在視窗右側設定Hadoop安裝路徑。
4、配置Map/Reduce Locations
開啟Windows—Open Perspective—Other
選擇Map/Reduce,點擊OK
在右下方看到如所示
點擊Map/Reduce Location選項卡,點擊右邊小象表徵圖,開啟Hadoop Location配置視窗:
輸入Location Name,任意名稱即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成與core-site.xml的設定一致即可。
點擊"Finish"按鈕,關閉視窗。
點擊左側的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安裝成功
如果如所示表示安裝失敗,請檢查Hadoop是否啟動,以及eclipse配置是否正確。
三、建立WordCount項目
File—>Project,選擇Map/Reduce Project,輸入項目名稱WordCount等。
在WordCount項目裡建立class,名稱為WordCount,代碼如下:
import java.io.IOException;import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } }} public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); }} public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);}}
四、運行
1、在HDFS上建立目錄input
hadoop fs -mkdir input
2、拷貝本地README.txt到HDFS的input裡
hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input
3、點擊WordCount.java,右鍵,點擊Run As—>Run Configurations,配置運行參數,即輸入和輸出檔案夾
hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output
點擊Run按鈕,運行程式。
4、運行完成後,查看運行結果
方法1:
hadoop fs -ls output
可以看到有兩個輸出結果,_SUCCESS和part-r-00000
執行hadoop fs -cat output/*
方法2:
展開DFS Locations,如所示,雙擊開啟part-r00000查看結果
(轉)Eclipse下搭建Hadoop2.4.0開發環境