Eclipse下搭建Hadoop2.4.0開發環境

來源:互聯網
上載者:User

標籤:blog   http   io   os   使用   ar   java   for   檔案   

一、安裝Eclipse

    下載Eclipse,解壓安裝,例如安裝到/usr/local,即/usr/local/eclipse

    4.3.1版本:http://pan.baidu.com/s/1eQkpRgu

二、在eclipse上安裝hadoop外掛程式

    1、下載hadoop外掛程式

        :http://pan.baidu.com/s/1mgiHFok

     此zip檔案包含了源碼,我們使用使用編譯好的jar即可,解壓後,release檔案夾中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是編譯好的外掛程式。

 

   2、把外掛程式放到eclipse/plugins目錄下

 

    3、重啟eclipse,配置Hadoop installation directory    

     如果外掛程式安裝成功,開啟Windows—Preferences後,在視窗左側會有Hadoop Map/Reduce選項,點擊此選項,在視窗右側設定Hadoop安裝路徑。

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4、配置Map/Reduce Locations

     開啟Windows—Open Perspective—Other

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    選擇Map/Reduce,點擊OK

    

    在右下方看到如所示

    

 

點擊Map/Reduce Location選項卡,點擊右邊小象表徵圖,開啟Hadoop Location配置視窗:

    輸入Location Name,任意名稱即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成與core-site.xml的設定一致即可。

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

點擊"Finish"按鈕,關閉視窗。

 點擊左側的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安裝成功

   

      

      

 

 

 

 

 

 

 

 

 

    如果如所示表示安裝失敗,請檢查Hadoop是否啟動,以及eclipse配置是否正確。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

三、建立WordCount項目

    File—>Project,選擇Map/Reduce Project,輸入項目名稱WordCount等。

    在WordCount項目裡建立class,名稱為WordCount,代碼如下:

    

import java.io.IOException;import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{   private final static IntWritable one = new IntWritable(1);  private Text word = new Text();   public void map(Object key, Text value, Context context) throws IOException, InterruptedException {    StringTokenizer itr = new StringTokenizer(value.toString());      while (itr.hasMoreTokens()) {        word.set(itr.nextToken());        context.write(word, one);      }  }} public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {  private IntWritable result = new IntWritable();   public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {    int sum = 0;    for (IntWritable val : values) {      sum += val.get();    }    result.set(sum);    context.write(key, result);  }} public static void main(String[] args) throws Exception {  Configuration conf = new Configuration();  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();  if (otherArgs.length != 2) {    System.err.println("Usage: wordcount <in> <out>");    System.exit(2);  }  Job job = new Job(conf, "word count");  job.setJarByClass(WordCount.class);  job.setMapperClass(TokenizerMapper.class);  job.setCombinerClass(IntSumReducer.class);  job.setReducerClass(IntSumReducer.class);  job.setOutputKeyClass(Text.class);  job.setOutputValueClass(IntWritable.class);  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));  System.exit(job.waitForCompletion(true) ? 0 : 1);}}

 

 

四、運行

    1、在HDFS上建立目錄input

        hadoop fs -mkdir input

    2、拷貝本地README.txt到HDFS的input裡

         hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input

    3、點擊WordCount.java,右鍵,點擊Run As—>Run Configurations,配置運行參數,即輸入和輸出檔案夾

  hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output

 

    

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  點擊Run按鈕,運行程式。

 

    4、運行完成後,查看運行結果        

        方法1:

 

        hadoop fs -ls output

        可以看到有兩個輸出結果,_SUCCESS和part-r-00000

        執行hadoop fs -cat output/*

        

        

        方法2:

        展開DFS Locations,如所示,雙擊開啟part-r00000查看結果

 

(轉)Eclipse下搭建Hadoop2.4.0開發環境

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.