標籤:bzoj 莫隊 樹上莫隊
題目大意:給出一棵樹,問任意兩點之間有多少種不同的顏色,一個人可能會有色盲,會將A和B當成一種顏色。
思路:比較裸的樹上莫隊,寫出來之後,很慢,懷疑是分塊的緣故,然後果斷找了當年比賽的標稱交上去,瞬間rk1,大概看了一眼,他好像是直接用DFS序+曼哈頓距離最小產生樹搞的,為什麼會比分塊快?
昨天下午看到這個題之後就一直在研究樹上莫隊的正確姿勢,然後先寫了樹分塊,後來看了很多牛人的SPOJ COT2的題解,後來又和同學探討了好久才弄明白。
首先先將樹分塊,然後把區間排序,按照第一權值為左端點所在塊的編號,右端點在DFS序中的位置排序,關鍵是轉移。有一種vfk的靠譜一點的方法。對於任意一個狀態,在樹上表示[l,r]的路徑,目前的狀態只存{x|x∈[l,r],x != LCA(l,r)}這些點的顏色,這樣就大概有兩種情況,一種是兩條鏈,沒有中間的LCA,或者是一條鏈,沒有頂端的LCA。然後一直這樣轉移,例如從[l,r]轉移到[x,y]的時候,我們只需要暴力從l->x,y->r,注意記錄一個標記數組,在轉移的時候把路徑上的所有點取反。這樣轉移之後還是{x|x∈[l,r],x != LCA(l,r)}這些點。統計答案的時候將LCA加回來,然後再刪掉。
注意:找LCA要倍增!千萬別像我以為寫不寫倍增都是O(n)然後T一晚上。。。
CODE:
#include <cmath>#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>#define MAX 100100using namespace std; inline char GetChar(){ static const int L = (1 << 15); static char buffer[L],*S = buffer,*T = buffer; if(S == T) { T = (S = buffer) + fread(buffer,1,L,stdin); if(S == T) return EOF; } return *S++;} inline int GetInt(){ int c; while(!isdigit(c = GetChar())); int x = c - '0'; while(isdigit(c = GetChar())) x = (x << 1) + (x << 3) + c - '0'; return x;} int block_size,belong[MAX],blocks;int pos[MAX],cnt;int size[MAX],root; struct Ask{ int x,y,_id; int mixed,_mixed; bool operator <(const Ask &a)const { if(belong[x] == belong[a.x]) return pos[y] < pos[a.y]; return belong[x] < belong[a.x]; } void Read(int p) { x = GetInt(),y = GetInt(); mixed = GetInt(),_mixed = GetInt(); if(pos[x] > pos[y]) swap(x,y); _id = p; }}ask[MAX << 1]; int points,asks;int head[MAX],total;int _next[MAX << 1],aim[MAX << 1]; int deep[MAX],father[MAX][20]; int src[MAX]; int num[MAX],colors;bool v[MAX];int ans[MAX]; inline void Add(int x,int y){ _next[++total] = head[x]; aim[total] = y; head[x] = total;} void DFS(int x,int last){ father[x][0] = last; pos[x] = ++cnt; deep[x] = deep[last] + 1; for(int i = head[x]; i; i = _next[i]) { if(aim[i] == last) continue; if(size[belong[x]] < block_size) ++size[belong[x]],belong[aim[i]] = belong[x]; else ++size[++blocks],belong[aim[i]] = blocks; DFS(aim[i],x); }} inline void Change(int x,int c){ if(!num[x]) ++num[x],++colors; else if(num[x] == 1 && c == -1) --num[x],--colors; else num[x] += c;} inline int GetLCA(int x,int y){ if(deep[x] < deep[y]) swap(x,y); for(int i = 19; ~i; --i) if(deep[father[x][i]] >= deep[y]) x = father[x][i]; if(x == y) return x; for(int i = 19; ~i; --i) if(father[x][i] != father[y][i]) x = father[x][i],y = father[y][i]; return father[x][0];} inline void Work(int x,int y,int lca){ for(; x != lca; x = father[x][0]) { Change(src[x],v[x] ? -1:1); v[x] ^= 1; } for(; y != lca; y = father[y][0]) { Change(src[y],v[y] ? -1:1); v[y] ^= 1; }} inline void Solve(int p){ static int l = root,r = root,lca; Work(l,ask[p].x,GetLCA(l,ask[p].x)); Work(r,ask[p].y,GetLCA(r,ask[p].y)); l = ask[p].x,r = ask[p].y; lca = GetLCA(l,r); Change(src[lca],1); ans[ask[p]._id] = colors; if(ask[p].mixed != ask[p]._mixed) ans[ask[p]._id] -= num[ask[p].mixed] && num[ask[p]._mixed]; Change(src[lca],-1);} inline void SparseTable(){ for(int j = 1; j < 20; ++j) for(int i = 1; i <= points; ++i) father[i][j] = father[father[i][j - 1]][j - 1];} int main(){ //freopen("apple.in","r",stdin); //freopen("apple.out","w",stdout); cin >> points >> asks; for(int i = 1; i <= points; ++i) src[i] = GetInt(); for(int x,y,i = 1; i <= points; ++i) { x = GetInt(),y = GetInt(); Add(x,y),Add(y,x); } block_size = sqrt(points + 1); size[1] = 1; belong[0] = 1; blocks = 1; DFS(0,MAX - 1); root = aim[head[0]]; SparseTable(); for(int i = 1; i <= asks; ++i) ask[i].Read(i); sort(ask + 1,ask + asks + 1); for(int i = 1; i <= asks; ++i) Solve(i); for(int i = 1; i <= asks; ++i) printf("%d\n",ans[i]); return 0;}
BZOJ 3757 蘋果樹 樹上莫隊