c/c++記憶體配置、指標和數組對比

來源:互聯網
上載者:User

 轉自:http://qiuyili68.blog.163.com/blog/static/67531803201111195115375/?fromdm&fromSearch&isFromSearchEngine=yes

 

記憶體配置方式

       在C++中,記憶體分成5個區,他們分別是堆、棧、自由儲存區、全域/靜態儲存區和常量儲存區
       棧,在執行函數時,函數內局部變數的儲存單元都可以在棧上建立,函數執行結束時這些儲存單元自動被釋放。棧記憶體配置運算內建於處理器的指令集中,效率很高,但是分配的記憶體容量有限。

  堆,就是那些由new分配的記憶體塊,他們的釋放編譯器不去管,由我們的應用程式去控制,一般一個new就要對應一個delete。如果程式員沒有釋放掉,那麼在程式結束後,作業系統會自動回收。

  自由儲存區,就是那些由malloc等分配的記憶體塊,他和堆是十分相似的,不過它是用free來結束自己的生命的。

  全域/靜態儲存區,全域變數和靜態變數被分配到同一塊記憶體中,在以前的C語言中,全域變數又分為初始化的和未初始化的,在C++裡面沒有這個區分了,他們共同佔用同一塊記憶體區。

  常量儲存區,這是一塊比較特殊的儲存區,他們裡面存放的是常量,不允許修改。

明確區分堆和棧

       舉一個例子:

       void f() { int* p=new int[5]; }

  這條短短的一句話就包含了堆與棧,看到new,我們首先就應該想到,我們分配了一塊堆記憶體,那麼指標p呢?他分配的是一塊棧記憶體,所以這句話的意思就是:在棧記憶體中存放了一個指向一塊堆記憶體的指標p。在程式會先確定在堆中分配記憶體的大小,然後調用operator new分配記憶體,然後返回這塊記憶體的首地址,放入棧中,他在VC6下的彙編代碼如下:

       00401028 push 14h

       0040102A call operator new (00401060)

       0040102F add esp,4

       00401032 mov dword ptr [ebp-8],eax

       00401035 mov eax,dword ptr [ebp-8]

       00401038 mov dword ptr [ebp-4],eax

堆和棧區別

  主要的區別由以下幾點:

  1、管理方式不同;

  2、空間大小不同;

  3、能否產生片段不同;

  4、生長方向不同;

  5、分配方式不同;

  6、分配效率不同;

  管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程式員控制,容易產生memory leak。

  空間大小:一般來講在32位系統下,堆記憶體可以達到4G的空間,從這個角度來看堆記憶體幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在VC6下面,預設的棧空間大小是1M(好像是,記不清楚了)。當然,我們可以修改:

  開啟工程,依次操作菜單如下:Project->Setting->Link,在Category 中選中Output,然後在Reserve中設定堆棧的最大值和commit。

  注意:reserve最小值為4Byte;commit是保留在虛擬記憶體的頁檔案裡面,它設定的較大會使棧開闢較大的值,可能增加記憶體的開銷和啟動時間。

  片段問題:對於堆來講,頻繁的new/delete勢必會造成記憶體空間的不連續,從而造成大量的片段,使程式效率降低。對於棧來講,則不會存在這個問題,因為棧是先進後出的隊列,他們是如此的一一對應,以至於永遠都不可能有一個記憶體塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以參考資料結構。

  生長方向:對於堆來講,生長方向是向上的,也就是向著記憶體位址增加的方向;對於棧來講,它的生長方向是向下的,是向著記憶體位址減小的方向增長。

  分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如局部變數的分配。動態分配由alloca函數進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。

  分配效率:棧是機器系統提供的資料結構,電腦會在底層對棧提供支援:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函數庫提供的,它的機制是很複雜的,例如為了分配一塊記憶體,庫函數會按照一定的演算法(具體的演算法可以參考資料結構/作業系統)在堆記憶體中搜尋可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於記憶體片段太多),就有可能調用系統功能去增加程式資料區段的記憶體空間,這樣就有機會分到足夠大小的記憶體,然後進行返回。顯然,堆的效率比棧要低得多。

  從這裡我們可以看到,堆和棧相比,由於大量new/delete的使用,容易造成大量的記憶體片段;由於沒有專門的系統支援,效率很低;由於可能引發使用者態和核心態的切換,記憶體的申請,代價變得更加昂貴。所以棧在程式中是應用最廣泛的,就算是函數的調用也利用棧去完成,函數調用過程中的參數,返回地址,EBP和局部變數都採用棧的方式存放。所以,我們應當盡量用棧,而不是用堆。

  雖然棧有如此眾多的好處,但是由於和堆相比不是那麼靈活,有時候分配大量的記憶體空間,還是用堆好一些。

       無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因為越界的結果要麼是程式崩潰,要麼是摧毀程式的堆、棧結構,產生以想不到的結果,就算是在你的程式運行過程中,沒有發生上面的問題,你還是要小心,說不定什麼時候就崩掉,那時候debug可是相當困難的:)

常見的記憶體錯誤及其對策

      發生記憶體錯誤是件非常麻煩的事情。編譯器不能自動探索這些錯誤,通常是在程式運行時才能捕捉到。而這些錯誤大多沒有明顯的癥狀,時隱時現,增加了改錯的難度。有時使用者怒氣沖沖地把你找來,程式卻沒有發生任何問題,你一走,錯誤又發作了。 常見的記憶體錯誤及其對策如下:
     * 記憶體配置未成功,卻使用了它

編程新手常犯這種錯誤,因為他們沒有意識到記憶體配置會不成功。常用解決辦法是,在使用記憶體之前檢查指標是否為NULL。如果指標p是函數的參數,那麼在函數的入口處用assert(p!=NULL)進行檢查。如果是用malloc或new來申請記憶體,應該用if(p==NULL) 或if(p!=NULL)進行防錯處理。

* 記憶體配置雖然成功,但是尚未初始化就引用它

犯這種錯誤主要有兩個起因:一是沒有初始化的觀念;二是誤以為記憶體的預設初值全為零,導致引用初值錯誤(例如數組)。記憶體的預設初值究竟是什麼並沒有統一的標準,儘管有些時候為零值,我們寧可信其無不可信其有。所以無論用何種方式建立數組,都別忘了賦初值,即便是賦零值也不可省略,不要嫌麻煩。

* 記憶體配置成功並且已經初始化,但操作越過了記憶體的邊界

例如在使用數組時經常發生下標“多1”或者“少1”的操作。特別是在for迴圈語句中,迴圈次數很容易搞錯,導致數組操作越界。

* 忘記了釋放記憶體,造成記憶體泄露

含有這種錯誤的函數每被調用一次就丟失一塊記憶體。剛開始時系統的記憶體充足,你看不到錯誤。終有一次程式突然死掉,系統出現提示:記憶體耗盡。

動態記憶體的申請與釋放必須配對,程式中malloc與free的使用次數一定要相同,否則肯定有錯誤(new/delete同理)。

* 釋放了記憶體卻繼續使用它

有三種情況:

(1)程式中的對象調用關係過於複雜,實在難以搞清楚某個對象究竟是否已經釋放了記憶體,此時應該重新設計資料結構,從根本上解決對象管理的混亂局面。

(2)函數的return語句寫錯了,注意不要返回指向“棧記憶體”的“指標”或者“引用”,因為該記憶體在函數體結束時被自動銷毀。

(3)使用free或delete釋放了記憶體後,沒有將指標設定為NULL。導致產生“野指標”。

【規則1】用malloc或new申請記憶體之後,應該立即檢查指標值是否為NULL。防止使用指標值為NULL的記憶體。

【規則2】不要忘記為數組和動態記憶體賦初值。防止將未被初始化的記憶體作為右值使用。

【規則3】避免數組或指標的下標越界,特別要當心發生“多1”或者“少1”操作。

【規則4】動態記憶體的申請與釋放必須配對,防止記憶體流失。

【規則5】用free或delete釋放了記憶體之後,立即將指標設定為NULL,防止產生“野指標”。

 

 

指標與數組的對比

C++/C程式中,指標和數組在不少地方可以相互替換著用,讓人產生一種錯覺,以為兩者是等價的。

數組要麼在靜態儲存區被建立(如全域數組),要麼在棧上被建立。數組名對應著(而不是指向)一塊記憶體,其地址與容量在生命期內保持不變,只有數組的內容可以改變。

指標可以隨時指向任意類型的記憶體塊,它的特徵是“可變”,所以我們常用指標來操作動態記憶體。指標遠比數組靈活,但也更危險。

下面以字串為例比較指標與數組的特性。

1 修改內容

下例中,字元數組a的容量是6個字元,其內容為hello。a的內容可以改變,如a[0]= 'x'。指標p指向常量字串"world"(位於靜態儲存區,內容為world),常量字串的內容是不可以被修改的。從文法上看,編譯器並不覺得語句 p[0]= 'x'有什麼不妥,但是該語句企圖修改常量字串的內容而導致運行錯誤。

#include<iostream.h>

void main()
   {
    char a[] = "hello";
    a[0] = 'x';
    cout << a << endl;
    char *p = "world"; // 注意p指向常量字串
    p[0] = 'x'; // 編譯器不能發現該錯誤
    cout << p << endl;
    }

2 內容複寫與比較

不能對數組名進行直接複製與比較。下例中,若想把數組a的內容複寫給數組b,不能用語句 b = a ,否則將產生編譯錯誤。應該用標準庫函數strcpy進行複製。同理,比較b和a的內容是否相同,不能用if(b==a) 來判斷,應該用標準庫函數strcmp進行比較。

語句p = a 並不能把a的內容複寫指標p,而是把a的地址賦給了p。要想複製a的內容,可以先用庫函數malloc為p申請一塊容量為strlen(a)+1個字元的記憶體,再用strcpy進行字串複製。同理,語句if(p==a) 比較的不是內容而是地址,應該用庫函數strcmp來比較。
// 數組…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)

// 指標…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len+1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)

 3 計算記憶體容量

用運算子sizeof可以計算出數組的容量(位元組數)。下例(a)中,sizeof(a)的值是12(注意別忘了' ')。指標p指向a,但是 sizeof(p)的值卻是4。這是因為sizeof(p)得到的是一個指標變數的位元組數,相當於sizeof(char*),而不是p所指的記憶體容量。 C++/C語言沒有辦法知道指標所指的記憶體容量,除非在申請記憶體時記住它。注意當數組作為函數的參數進行傳遞時,該數組自動退化為同類型的指標。下例(b)中,不論數組a的容量是多少,sizeof(a)始終等於sizeof(char *)。

樣本(a)
char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12位元組
cout<< sizeof(p) << endl; // 4位元組
樣本(b)
void Func(char a[100])
  {
 cout<< sizeof(a) << endl; // 4位元組而不是100位元組
}

       4 指標參數傳遞記憶體

       如果函數的參數是一個指標,不要指望用該指標去申請動態記憶體。如下樣本中,Test函數的語句GetMemory(str, 200)並沒有使str獲得期望的記憶體,str依舊是NULL,為什嗎?

void GetMemory(char *p, int num)

{

 p = (char *)malloc(sizeof(char) * num);

}

void Test(void)

{

 char *str = NULL;

 GetMemory(str, 100); // str 仍然為 NULL

 strcpy(str, "hello"); // 運行錯誤

}

       毛病出在函數GetMemory中。編譯器總是要為函數的每個參數製作臨時副本,指標參數p的副本是 _p,編譯器使 _p = p。如果函數體內的程式修改了_p的內容,就導致參數p的內容作相應的修改。這就是指標可以用作輸出參數的原因。在本例中,_p申請了新的記憶體,只是把_p所指的記憶體位址改變了,但是p絲毫未變。所以函數GetMemory並不能輸出任何東西。事實上,每執行一次GetMemory就會泄露一塊記憶體,因為沒有用free釋放記憶體。

       如果非得要用指標參數去申請記憶體,那麼應該改用“指向指標的指標”,見樣本:

void GetMemory2(char **p, int num)

{

 *p = (char *)malloc(sizeof(char) * num);

}

void Test2(void)

{

 char *str = NULL;

 GetMemory2(&str, 100); // 注意參數是 &str,而不是str

 strcpy(str, "hello");

 cout<< str << endl;

 free(str);

}
      由於“指向指標的指標”這個概念不容易理解,我們可以用函數傳回值來傳遞動態記憶體。這種方法更加簡單,見樣本:

char *GetMemory3(int num)

{

 char *p = (char *)malloc(sizeof(char) * num);

 return p;

}

void Test3(void)

{

 char *str = NULL;

 str = GetMemory3(100);

 strcpy(str, "hello");

 cout<< str << endl;

 free(str);

}
 用函數傳回值來傳遞動態記憶體這種方法雖然好用,但是常常有人把return語句用錯了。這裡強調不要用return語句返回指向“棧記憶體”的指標,因為該記憶體在函數結束時自動消亡,見樣本:

char *GetString(void)

{

 char p[] = "hello world";

 return p; // 編譯器將提出警告

}

void Test4(void)

{

 char *str = NULL;

 str = GetString(); // str 的內容是垃圾

 cout<< str << endl;

}

用調試器逐步跟蹤Test4,發現執行str = GetString語句後str不再是NULL指標,但是str的內容不是“hello world”而是垃圾。

如果把上述樣本改寫成如下樣本,會怎麼樣?

char *GetString2(void)

{

 char *p = "hello world";

 return p;

}

void Test5(void)

{

 char *str = NULL;

 str = GetString2();

 cout<< str << endl;

}

函數Test5運行雖然不會出錯,但是函數GetString2的設計概念卻是錯誤的。因為GetString2內的“hello world”是常量字串,位於靜態儲存區,它在程式生命期內恒定不變。無論什麼時候調用GetString2,它返回的始終是同一個“唯讀”的記憶體塊。

        5 杜絕“野指標”
  “野指標”不是NULL指標,是指向“垃圾”記憶體的指標。人們一般不會錯用NULL指標,因為用if語句很容易判斷。但是“野指標”是很危險的,if語句對它不起作用。 “野指標”的成因主要有兩種:

(1)指標變數沒有被初始化。任何指標變數剛被建立時不會自動成為NULL指標,它的預設值是隨機的,它會亂指一氣。所以,指標變數在建立的同時應當被初始化,要麼將指標設定為NULL,要麼讓它指向合法的記憶體。例如

char *p = NULL;

char *str = (char *) malloc(100);
 

(2)指標p被free或者delete之後,沒有置為NULL,讓人誤以為p是個合法的指標。

(3)指標操作超越了變數的範圍範圍。這種情況讓人防不勝防,樣本程式如下:

class A

{

 public:

  void Func(void){ cout << “Func of class A” << endl; }

};

void Test(void)

{

 A *p;

 {

  A a;

  p = &a; // 注意 a 的生命期

 }

 p->Func(); // p是“野指標”

}

函數Test在執行語句p->Func()時,對象a已經消失,而p是指向a的,所以p就成了“野指標”。但奇怪的是我運行這個程式時居然沒有出錯,這可能與編譯器有關。

 

轉自:http://qiuyili68.blog.163.com/blog/static/67531803201111195115375/?fromdm&fromSearch&isFromSearchEngine=yes

 

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.