轉載請註明出處,謝謝http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
題目:給出n個數,選出三個數,按下標順序形成等差數列
http://www.codechef.com/problems/COUNTARI
如果只是形成 等差數列並不難,大概就是先求一次卷積,然後再O(n)枚舉,判斷2 * a[i]的種數,不過按照下標就不會了。
有種很矬的,大概就是O(n)枚舉中間的數,然後 對兩邊分別卷積,O(n * n * lgn)。
如果能想到枚舉中間的數的話,應該可以進一步想到分塊處理。
如果分為K塊
那麼分為幾種情況 :
三個數都是在當前塊中,那麼可以枚舉後兩個數,尋找第一個數,複雜度O(N/K * N/K)
兩個數在當前塊中,那麼另外一個數可能在前面,也可能在後面,同理還是枚舉兩個數,尋找,複雜度
O(N/K * N/K)
如果只有一個數在當前塊中,那麼就要對兩邊的數進行卷積,然後枚舉當前塊中的數,查詢2 × a[i]。複雜度O(N * lg N)
那麼總體就是O(k * (N/K * N/K + N * lg N))。
#include <iostream>#include <cstdio>#include <cstring>#include <cmath>#include <algorithm>using namespace std;//FFT copy from kuangbinconst double pi = acos (-1.0);// Complex z = a + b * i struct Complex { double a, b; Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){} Complex operator + (const Complex &c) const { return Complex(a + c.a , b + c.b); } Complex operator - (const Complex &c) const { return Complex(a - c.a , b - c.b); } Complex operator * (const Complex &c) const { return Complex(a * c.a - b * c.b , a * c.b + b * c.a); }};//len = 2 ^ kvoid change (Complex y[] , int len) { for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) { if (i < j) swap(y[i] , y[j]); int k = len / 2; while (j >= k) { j -= k; k /= 2; } if(j < k) j += k; } }// FFT // len = 2 ^ k// on = 1 DFT on = -1 IDFTvoid FFT (Complex y[], int len , int on) { change (y , len); for (int h = 2 ; h <= len ; h <<= 1) { Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h)); for (int j = 0 ; j < len ; j += h) { Complex w(1 , 0); for (int k = j ; k < j + h / 2 ; k ++) { Complex u = y[k]; Complex t = w * y [k + h / 2]; y[k] = u + t; y[k + h / 2] = u - t; w = w * wn; } } } if (on == -1) { for (int i = 0 ; i < len ; i ++) { y[i].a /= len; } }}const int N = 100005;typedef long long LL;int n , a[N];int block , size;LL num[N << 2];int min_num = 30000 , max_num = 1;int before[N] = {0}, behind[N] = {0} , in[N] = {0};Complex x1[N << 2] ,x2[N << 2];int main () { #ifndef ONLINE_JUDGE freopen("input.txt" , "r" , stdin); #endif scanf ("%d", &n); for (int i = 0 ; i < n ; ++ i) { scanf ("%d", &a[i]); behind[a[i]] ++; min_num = min (min_num , a[i]); max_num = max (max_num , a[i]); } LL ret = 0; block = min(n , 35); size = (n + block - 1) / block; for (int t = 0 ; t < block ; t ++) { int s = t * size , e = (t + 1) * size; if (e > n) e = n; for (int i = s ; i < e ; i ++) { behind[a[i]] --; } for (int i = s ; i < e ; i ++) { for (int j = i + 1 ; j < e ; j ++) { int m = 2 * a[i] - a[j]; if(m >= 1 && m <= 30000) { // both of three in the block ret += in[m]; // one of the number in the pre block ret += before[m]; } m = 2 * a[j] - a[i]; if (m >= 1 && m <= 30000) { // one of the number in the next block ret += behind[m]; } } in[a[i]] ++; } // pre block , current block , next block if (t > 0 && t < block - 1) { int l = 1; int len = max_num + 1; while (l < len * 2) l <<= 1; for (int i = 0 ; i < len ; i ++) { x1[i] = Complex (before[i] , 0); } for (int i = len ; i < l ; i ++) { x1[i] = Complex (0 , 0); } for (int i = 0 ; i < len ; i ++) { x2[i] = Complex (behind[i] , 0); } for (int i = len ; i < l ; i ++) { x2[i] = Complex (0 , 0); } FFT (x1 , l , 1); FFT (x2 , l , 1); for (int i = 0 ; i < l ; i ++) { x1[i] = x1[i] * x2[i]; } FFT (x1 , l , -1); for (int i = 0 ; i < l ; i ++) { num[i] = (LL)(x1[i].a + 0.5); } for (int i = s ; i < e ; i ++) { ret += num[a[i] << 1]; } } for (int i = s ; i < e ; i ++) { in[a[i]] --; before[a[i]] ++; } } printf("%lld\n", ret); return 0;}