對比實驗
資料顯示,如果多線程的進程是CPU密集型的,那多線程並不能有多少效率上的提升,相反還可能會因為線程的頻繁切換,導致效率下降,推薦使用多進程;如果是IO密集型,多線程進程可以利用IO阻塞等待時的空閑時間執行其他線程,提升效率。所以我們根據實驗對比不同情境的效率
(1)引入所需要的模組
import requestsimport timefrom threading import Threadfrom multiprocessing import Process
(2)定義CPU密集的計算函數
def count(x, y): # 使程式完成150萬計算 c = 0 while c < 500000: c += 1 x += x y += y
(3)定義IO密集的檔案讀寫函數
def write(): f = open("test.txt", "w") for x in range(5000000): f.write("testwrite\n") f.close()def read(): f = open("test.txt", "r") lines = f.readlines() f.close()
(4) 定義網路請求函數
_head = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}url = "http://www.tieba.com"def http_request(): try: webPage = requests.get(url, headers=_head) html = webPage.text return {"context": html} except Exception as e: return {"error": e}
(5)測試線性執行IO密集操作、CPU密集操作所需時間、網路請求密集型操作所需時間
# CPU密集操作t = time.time()for x in range(10): count(1, 1)print("Line cpu", time.time() - t)# IO密集操作t = time.time()for x in range(10): write() read()print("Line IO", time.time() - t)# 網路請求密集型操作t = time.time()for x in range(10): http_request()print("Line Http Request", time.time() - t)
輸出
CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
網路請求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697
(6)測試多線程並發執行CPU密集操作所需時間
counts = []t = time.time()for x in range(10): thread = Thread(target=count, args=(1,1)) counts.append(thread) thread.start()e = counts.__len__()while True: for th in counts: if not th.is_alive(): e -= 1 if e <= 0: breakprint(time.time() - t)
Output: 99.9240000248 、101.26400017738342、102.32200002670288
(7)測試多線程並發執行IO密集操作所需時間
def io(): write() read()t = time.time()ios = []t = time.time()for x in range(10): thread = Thread(target=count, args=(1,1)) ios.append(thread) thread.start()e = ios.__len__()while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: breakprint(time.time() - t)
Output: 25.69700002670288、24.02400016784668
(8)測試多線程並發執行網路密集操作所需時間
t = time.time()ios = []t = time.time()for x in range(10): thread = Thread(target=http_request) ios.append(thread) thread.start()e = ios.__len__()while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: breakprint("Thread Http Request", time.time() - t)
Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748
(9)測試多進程並發執行CPU密集操作所需時間
counts = []t = time.time()for x in range(10): process = Process(target=count, args=(1,1)) counts.append(process) process.start()e = counts.__len__()while True: for th in counts: if not th.is_alive(): e -= 1 if e <= 0: breakprint("Multiprocess cpu", time.time() - t)
Output: 54.342000007629395、53.437999963760376
(10)測試多進程並發執行IO密集型操作
t = time.time()ios = []t = time.time()for x in range(10): process = Process(target=io) ios.append(process) process.start()e = ios.__len__()while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: breakprint("Multiprocess IO", time.time() - t)
Output: 12.509000062942505、13.059000015258789
(11)測試多進程並發執行Http請求密集型操作
t = time.time()httprs = []t = time.time()for x in range(10): process = Process(target=http_request) ios.append(process) process.start()e = httprs.__len__()while True: for th in httprs: if not th.is_alive(): e -= 1 if e <= 0: breakprint("Multiprocess Http Request", time.time() - t)
Output: 0.5329999923706055、0.4760000705718994
實驗結果
通過上面的結果,我們可以看到:
多線程在IO密集型的操作下似乎也沒有很大的優勢(也許IO操作的任務再繁重一些就能體現出優勢),在CPU密集型的操作下明顯地比單線程線性執行效能更差,但是對於網路請求這種忙等阻塞線程的操作,多線程的優勢便非常顯著了
多進程無論是在CPU密集型還是IO密集型以及網路請求密集型(經常發生線程阻塞的操作)中,都能體現出效能的優勢。不過在類似網路請求密集型的操作上,與多線程相差無幾,但卻更佔用CPU等資源,所以對於這種情況下,我們可以選擇多線程來執行