完全背包問題(Java實現)

來源:互聯網
上載者:User

http://www.concretevitamin.com.cn/informatics/Pack/P02.html 

 

題目

有N種物品和一個容量為V的背包,每種物品都有無限件可用。第i種物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

基本思路

這個問題非常類似於01背包問題,所不同的是每種物品有無限件。也就是從每種物品的角度考慮,與它相關的策略已並非取或不取兩種,而是有取0件、取1件、取2件……等很多種。如果仍然按照解01背包時的思路,令f[i][v]表示前i種物品恰放入一個容量為v的背包的最大權值。仍然可以按照每種物品不同的策略寫出狀態轉移方程,像這樣:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

這跟01背包問題一樣有O(VN)個狀態需要求解,但求解每個狀態的時間已經不是常數了,求解狀態f[i][v]的時間是O(v/c[i]),總的複雜度可以認為是O(V*Σ(V/c[i])),是比較大的。

將01背包問題的基本思路加以改進,得到了這樣一個清晰的方法。這說明01背包問題的方程的確是很重要,可以推及其它類型的背包問題。但我們還是試圖改進這個複雜度。

一個簡單有效最佳化

完全背包問題有一個很簡單有效最佳化,是這樣的:若兩件物品i、j滿足c[i]<=c[j]且w[i]>=w[j],則將物品j去掉,不用考慮。這個最佳化的正確性顯然:任何情況下都可將價值小費用高得j換成物美價廉的i,得到至少不會更差的方案。對於隨機產生的資料,這個方法往往會大大減少物品的件數,從而加快速度。然而這個並不能改善最壞情況的複雜度,因為有可能特別設計的資料可以一件物品也去不掉。

這個最佳化可以簡單的O(N^2)地實現,一般都可以承受。另外,針對背包問題而言,比較不錯的一種方法是:首先將費用大於V的物品去掉,然後使用類似計數排序的做法,計算出費用相同的物品中價值最高的是哪個,可以O(V+N)地完成這個最佳化。這個不太重要的過程就不給出虛擬碼了,希望你能獨立思考寫出虛擬碼或程式。

轉化為01背包問題求解

既然01背包問題是最基本的背包問題,那麼我們可以考慮把完全背包問題轉化為01背包問題來解。最簡單的想法是,考慮到第i種物品最多選V/c[i]件,於是可以把第i種物品轉化為V/c[i]件費用及價值均不變的物品,然後求解這個01背包問題。這樣完全沒有改進基本思路的時間複雜度,但這畢竟給了我們將完全背包問題轉化為01背包問題的思路:將一種物品拆成多件物品。

更高效的轉化方法是:把第i種物品拆成費用為c[i]*2^k、價值為w[i]*2^k的若干件物品,其中k滿足c[i]*2^k<=V。這是二進位的思想,因為不管最優策略選幾件第i種物品,總可以表示成若干個2^k件物品的和。這樣把每種物品拆成O(log V/c[i])件物品,是一個很大的改進。

但我們有更優的O(VN)的演算法。

O(VN)的演算法

這個演算法使用一維數組,先看虛擬碼:

for i=1..N    for v=0..V        f[v]=max{f[v],f[v-cost]+weight}

你會發現,這個虛擬碼與P01的虛擬碼只有v的迴圈次序不同而已。為什麼這樣一改就可行呢?首先想想為什麼P01中要按照v=V..0的逆序來迴圈。這是因為要保證第i次迴圈中的狀態f[i][v]是由狀態f[i-1][v-c[i]]遞推而來。換句話說,這正是為了保證每件物品只選一次,保證在考慮“選入第i件物品”這件策略時,依據的是一個絕無已經選入第i件物品的子結果f[i-1][v-c[i]]。而現在完全背包的特點恰是每種物品可選無限件,所以在考慮“加選一件第i種物品”這種策略時,卻正需要一個可能已選入第i種物品的子結果f[i][v-c[i]],所以就可以並且必須採用v=0..V的順序迴圈。這就是這個簡單的程式為何成立的道理。

值得一提的是,上面的虛擬碼中兩層for迴圈的次序可以顛倒。這個結論有可能會帶來演算法時間常數上的最佳化。

這個演算法也可以以另外的思路得出。例如,將基本思路中求解f[i][v-c[i]]的狀態轉移方程顯式地寫出來,代入原方程中,會發現該方程可以等價地變形成這種形式:

f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}

將這個方程用一維數組實現,便得到了上面的虛擬碼。

最後抽象出處理一件完全背包類物品的過程虛擬碼:

procedure CompletePack(cost,weight)    for v=cost..V        f[v]=max{f[v],f[v-c[i]]+w[i]}
總結

完全背包問題也是一個相當基礎的背包問題,它有兩個狀態轉移方程,分別在“基本思路”以及“O(VN)的演算法“的小節中給出。希望你能夠對這兩個狀態轉移方程都仔細地體會,不僅記住,也要弄明白它們是怎麼得出來的,最好能夠自己想一種得到這些方程的方法。事實上,對每一道動態規劃題目都思考其方程的意義以及如何得來,是加深對動態規劃的理解、提高動態規劃功力的好方法。

 

 

 

  1. public class CompletePack {
  2.     public CompletePack(int V) {
  3.         this.V = V;
  4.         this.maxValues = new int[this.V + 1];
  5.     }
  6.     private int V;
  7.     private int[] maxValues;
  8.     public int add(Goods goods) {
  9.         if (goods.getCost() > V) {
  10.             return getMaxValue();
  11.         }
  12.         for (int v = goods.getCost(); v <= V; v++) {
  13.             maxValues[v] = Math.max(maxValues[v],
  14.                     maxValues[v - goods.getCost()] + goods.getValue());
  15.         }
  16.         return getMaxValue();
  17.     }
  18.     public int getMaxValue() {
  19.         return maxValues[V];
  20.     }
  21.     /**
  22.      * @param args
  23.      */
  24.     public static void main(String[] args) {
  25.         CompletePack pack = new CompletePack(100);
  26.         for (int i = 0; i < 10; i++) {
  27.             Goods g1 = new Goods((int) (Math.random() * 100), (int) (Math
  28.                     .random() * 100));
  29.             pack.add(g1);
  30.             System.out.println(g1.getCost() + "," + g1.getValue() + "   Max: "
  31.                     + pack.getMaxValue());
  32.         }
  33.     }
  34. }
相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.