這是一個建立於 的文章,其中的資訊可能已經有所發展或是發生改變。
go源碼閱讀筆記(math.1)
abs.go
func Abs(x float64) float64
package math// Abs returns the absolute value of x.//// Special cases are:// Abs(±Inf) = +Inf// Abs(NaN) = NaNfunc Abs(x float64) float64 { // TODO: once golang.org/issue/13095 is fixed, change this to: // return Float64frombits(Float64bits(x) &^ (1 << 63)) // But for now, this generates better code and can also be inlined: if x < 0 { return -x } if x == 0 { return 0 // return correctly abs(-0) } return x}
求一個數的絕對值Abs()函數
主要地方在於
if x == 0 {
return 0 // return correctly abs(-0)
}
這裡是考慮當x=-0的情境,所以返回0
bits.go
const ( uvnan = 0x7FF8000000000001 uvinf = 0x7FF0000000000000 uvneginf = 0xFFF0000000000000 mask = 0x7FF shift = 64 - 11 - 1 bias = 1023)
數值表示遵循IEEE 754標準
- uvnan,NaN, Not a Number
- uvinf,正無窮大
- uvneginf,負無窮大
函數func Inf(sign int) float64
// Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.func Inf(sign int) float64 { var v uint64 if sign >= 0 { v = uvinf } else { v = uvneginf } return Float64frombits(v)}
如果sign是正數,就返回正無窮大,如果是負數就返回負無窮大
func NaN() float64
// NaN returns an IEEE 754 ``not-a-number'' value.func NaN() float64 { return Float64frombits(uvnan) }
NaN()返回NaN值
func IsNaN(f float64) (is bool)
// IsNaN reports whether f is an IEEE 754 ``not-a-number'' value.func IsNaN(f float64) (is bool) { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: // x := Float64bits(f); // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf return f != f}
該函數判斷一個數是否是NaN
如果不想使用浮點硬體,可以按照注釋所說的這種方式計算
x := Float64bits(f);return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
uint32(x>>shift)&mask == mask,x的高12位為0x7FF
x != uvinf,x不是正無窮大
x != uvneginf,x不是負無窮大
func IsInf(f float64, sign int) bool
// IsInf reports whether f is an infinity, according to sign.// If sign > 0, IsInf reports whether f is positive infinity.// If sign < 0, IsInf reports whether f is negative infinity.// If sign == 0, IsInf reports whether f is either infinity.func IsInf(f float64, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: // x := Float64bits(f); // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64}
判斷一個數是不是無窮大數
同樣,如果不想使用浮點硬體,可以按照注釋所說的這種方式計算
func normalize(x float64) (y float64, exp int)
// normalize returns a normal number y and exponent exp// satisfying x == y × 2**exp. It assumes x is finite and non-zero.func normalize(x float64) (y float64, exp int) { const SmallestNormal = 2.2250738585072014e-308 // 2**-1022 if Abs(x) < SmallestNormal { return x * (1 << 52), -52 } return x, 0}
這個不懂什麼意思
遺留問題,MaxFloat64和-MaxFloat64是多少呢?
另一個
Float64frombits(v)像是把一個數轉化成float64,是如何?的呢?
一些數學函數……
func Acosh(x float64) float64
返回x的反雙曲餘弦值
func Asin(x float64) float64
func Acos(x float64) float64
func Asinh(x float64) float64
func Atan(x float64) float64
func Atan2(y, x float64) float64
func Atanh(x float64) float64