【轉】樹狀數組

來源:互聯網
上載者:User

標籤:分析方法   ref   操作   位置   注意   方便   變換   位元運算   關心   

轉自:http://blog.csdn.net/int64ago/article/details/7429868

一、樹狀數組是幹什麼的?

       平常我們會遇到一些對數組進行維護查詢的操作,比較常見的如,修改某點的值、求某個區間的和,而這兩種恰恰是樹狀數組的強項!當然,資料規模不大的時候,對於修改某點的值是非常容易的,複雜度是O(1),但是對於求一個區間的和就要掃一遍了,複雜度是O(N),如果即時的對數組進行M次修改或求和,最壞的情況下複雜度是O(M*N),當規模增大後這是划不來的!而樹狀數組幹同樣的事複雜度卻是O(M*lgN),別小看這個lg,很大的數一lg就很小了,這個學過數學的都知道吧,不需要我說了。申明一下,看下面的文章一定不要急,只需要看懂每一步最後自然就懂了。

二、樹狀數組怎麼乾的?

        先看兩幅圖(網上找的,如果雷同,不要大驚小怪~),下面的說明都是基於這兩幅圖的,上面的叫A圖吧,下面的叫B圖:

是不是很像一顆樹?對,這就是為什麼叫樹狀數組了~先看A圖,a數組就是我們要維護和查詢的數組,但是其實我們整個過程中根本用不到a數組,你可以把它當作一個擺設!c數組才是我們全程關心和操縱的重心。先由圖來看看c數組的規則,其中c8 = c4+c6+c7+a8,c6 = c5+a6……先不必糾結怎麼做到的,我們只要知道c數組的大致規則即可,很容易知道c8表示a1~a8的和,但是c6卻是表示a5~a6的和,為什麼會產生這樣的區別的呢?或者說發明她的人為什麼這樣區別對待呢?答案是,這樣會使操作更簡單!看到這相信有些人就有些感覺了,為什麼複雜度被lg了呢?可以看到,c8可以看作a1~a8的左半邊和+右半邊和,而其中左半邊和是確定的c4,右半邊其實也是同樣的規則把a5~a8一分為二……繼續下去都是一分為二直到不能分,可以看看B圖。怎麼樣?是不是有點二分的味道了?對,說白了樹狀數組就是巧妙的利用了二分,她並不神秘,關鍵是她的巧妙!

       她又是怎樣做到不斷的一分為二呢?說這個之前我先說個叫lowbit的東西,lowbit(k)就是把k的二進位的高位1全部清空,只留下最低位的1,比如10的二進位是1010,則lowbit(k)=lowbit(1010)=0010(2進位),介於這個lowbit在下面會經常用到,這裡給一個非常方便的實現方式,比較普遍的方法lowbit(k)=k&-k,這是位元運算,我們知道一個數加一個負號是把這個數的二進位取反+1,如-10的二進位就是-1010=0101+1=0110,然後用1010&0110,答案就是0010了!明白了求解lowbit的方法就可以了,繼續下面。介於下面討論十進位已經沒有意義(這個世界本來就是二進位的,人非要主觀的構建一個十進位),下面所有的數沒有特別說明都當作二進位。

       上面那麼多文字說lowbit,還沒說它的用處呢,它就是為了聯絡a數組和c數組的!ck表示從ak開始往左連續求lowbit(k)個數的和,比如c[0110]=a[0110]+a[0101],就是從110開始計算了0010個數的和,因為lowbit(0110)=0010,可以看到其實只有低位的1起作用,因為很顯然可以寫出c[0010]=a[0010]+a[0001],這就為什麼我們任何數都只關心它的lowbit,因為高位不起作用(基於我們的二分規則它必須如此!),除非除了高位其餘位都是0,這時本身就是lowbit。

既然關係建立好了,看看如何?a某一個位置資料跟改的,她不會直接改的(開始就說了,a根本不存在),她每次改其實都要維護c數組應有的性質,因為後面求和要用到。而維護也很簡單,比如更改了a[0011],我們接著要修改c[0011],c[0100],c[1000],這是很容易從圖上看出來的,但是你可能會問,他們之間有申明必然聯絡嗎?每次求解總不能總要拿圖來看吧?其實從0011——>0100——>1000的變化都是進行“去尾”操作,又是自己造的詞--‘‘,我來解釋下,就是把尾部應該去掉的1都去掉轉而換到更高位的1,記住每次變換都要有一個高位的1產生,所以0100是不能變換到0101的,因為沒有新的高位1產生,這個變換過程恰好是可以藉助我們的lowbit進行的,k +=lowbit(k)。

       好吧,現在更新的次序都有了,可能又會產生新的疑問了:為什麼它非要是這種關係啊?這就要追究到之前我們說c8可以看作a1~a8的左半邊和+右半邊和……的內容了,為什麼c[0011]會影響到c[0100]而不會影響到c[0101],這就是之前說的c[0100]的求解實際上是這樣分段的區間 c[0001]~c[0001] 和區間c[0011]~c[0011]的和,數字太小,可能這樣不太理解,在比如c[0100]會影響c[1000],為什麼呢?因為c[1000]可以看作0001~0100的和加上0101~1000的和,但是0101位置的數變化並會直接作用於c[1000],因為它的尾部1不能一下在跳兩級在產生兩次高位1,是通過c[0110]間接影響的,但是,c[0100]卻可以跳一級產生一次高位1。

         可能上面說的你比較繞了,那麼此時你只需注意:c的構成性質(其實是分組性質)決定了c[0011]只會直接影響c[0100],而c[0100]只會直接影響[1000],而下表之間的關係恰好是也必須是k +=lowbit(k)。此時我們就是寫出跟新維護樹的代碼:

1 void add(int k,int num)2 {3     while(k<=n)4     {5         tree[k]+=num;6         k+=k&-k;7     }8 }

有了上面的基礎,說求和就比較簡單了。比如求0001~0110的和就直接c[0100]+c[0110],分析方法與上面的恰好逆過來,而且寫法也是逆過來的,具體就不累述了:

 

int read(int k)//1~k的區間和{    int sum=0;    while(k)    {        sum+=tree[k];        k-=k&-k;    }    return sum;}

 

三、總結一下吧

          首先,明白樹狀數組所白了是按照二分對數組進行分組;維護和查詢都是O(lgn)的複雜度,複雜度取決於最壞的情況,也是O(lgn);lowbit這裡只是一個技巧,關鍵在於明白c數組的構成規律;分析的過程二進位一定要深入人心,當作心目中的十進位。

 

【轉】樹狀數組

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.