Hive索引,hive

來源:互聯網
上載者:User

Hive索引,hive

1、        Hive索引概述

Hive的索引目的是提高Hive表指定列的查詢速度。

沒有索引時,類似'WHERE tab1.col1 = 10' 的查詢,Hive會載入整張表或分區,然後處理所有的rows,但是如果在欄位col1上面存在索引時,那麼只會載入和處理檔案的一部分。

與其他傳統資料庫一樣,增加索引在提升查詢速度時,會消耗額外資源去建立索引和需要更多的磁碟空間儲存索引。

Hive 0.7.0版本中,加入了索引。Hive 0.8.0版本中增加了bitmap索引。

2、        索引相關的配置參數

hive.index.compact.file.ignore.hdfs

Default Value: false

Added In: Hive 0.7.0 withHIVE-1889

在索引檔案中儲存的hdfs地址將在運行時被忽略,如果開啟的話;如果資料被遷移,那麼索引檔案依然可用,預設是false

 

hive.optimize.index.filter

Default Value: false

Added In: Hive 0.8.0 withHIVE-1644

是否自動使用索引, 預設是false

 

hive.optimize.index.filter.compact.minsize

Default Value: 5368709120

Added In: Hive 0.8.0 withHIVE-1644

壓縮索引自動應用的最小輸入大小

 

 

 

hive.optimize.index.filter.compact.maxsize

Default Value: -1

Added In: Hive 0.8.0 withHIVE-1644

壓縮索引自動應用的最大輸入大小,負值代表正無窮

 

hive.index.compact.query.max.size

Default Value: 10737418240

Added In: Hive 0.8.0 withHIVE-2096

一個使用壓縮索引做的查詢能取到的最大資料量,預設是10737418240 個byte;負值代表無窮大;

 

hive.index.compact.query.max.entries

Default Value: 10000000

Added In: Hive 0.8.0 withHIVE-2096

使用壓縮索引查詢時能讀到的最大索引項目數,預設是10000000;負值代表無窮大;

 

hive.exec.concatenate.check.index

Default Value: true

Added In: Hive 0.8.0 withHIVE-2125

如果設定為true,那麼在做ALTER TABLE tbl_name CONCATENATE on a table/partition(有索引) 操作時,拋出錯誤;可以協助使用者避免index的刪除和重建;

 

hive.optimize.index.groupby

Default Value: false

Added In: Hive 0.8.1 withHIVE-1694

 

 

 

hive.index.compact.binary.search

Default Value: true

Added In: Hive 0.8.1with HIVE-2535

在索引表中是否開啟二分搜尋進行索引項目查詢,預設是true;

 

3、        索引樣本

注意:在Hive 0.12.0以及之前版本中,索引名稱在create index和drop index語句中是大小寫敏感的。然而,alter index 需要一個小寫索引名字。

此bug在Hive 0.13.0解決,此版本開始使索引名字大小寫不敏感。

對於Hive 0.13.0之前的版本,最好使用小寫索引名字。

下面介紹索引的常見用法:

A、       Create/build,show和drop index

create index table01_index ontable table01(column2) as 'COMPACT' with deferred rebuild;

show index on table01;

drop index table01_index ontable01;

 

B、       Create then build,show formatted和drop index

create index table02_index ontable table02(column3) as 'compact' with deferred rebuild;

alter index table02_index ontable02 rebuild;

show formatted index ontable02;

drop index table02_index ontable02;

 

C、       建立bitmap索引,build,show 和drop

createindex table03_index on table table03 (column4) as'bitmap' with deferred rebuild;

alter index table03_index ontable03 rebuild;

show formatted index ontable03;

drop index table03_index on table03;

D、       在一張新表上建立索引

createindex table04_index on table table04 (column5)as 'compact'with deferred rebuild in tabletable04_index_table;

E、        建立索引,儲存格式為RCFile

create index table05_index ontable table05 (column6) as 'compact'with deferred rebuildstored as rcfile;

F、        建立索引,儲存格式為TextFile

create index table06_index ontable table06 (column7) as 'compact'with deferredrebuild row format delimited fields terminated by '\t' stored as textfile;

G、       建立帶有索引屬性的索引

create index table07_index ontable table07 (column8) as 'compact'with deferred rebuild idxproperties("prop1"="value1", "prop2"="value2");

H、       建立帶有表屬性的索引

create index table08_index ontable table08 (column9) as 'compact'withdeferred rebuild tblproperties("prop3"="value3", "prop4"="value4");

I、        如果索引存在,則刪除

drop index if exists table09_indexon table09;

J、        在分區上重建索引

alter index table10_index on table10partition (columnx='valueq', columny='valuer') rebuild;

4、        索引測試

(1)  查詢表中行數

hive (hive)> select count(1)from userbook;

4409365

(2)  表中未建立索引前查詢

hive (hive)> select * fromuserbook where book_id = '15999998838';

Query ID =hadoop_20150627165551_595da79a-0e27-453b-9142-7734912934c4

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there's no reduce operator

Starting Job =job_1435392961740_0012, Tracking URL =http://gpmaster:8088/proxy/application_1435392961740_0012/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0012

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 16:56:04,666 Stage-1map = 0%,  reduce = 0%

2015-06-27 16:56:28,974 Stage-1map = 50%,  reduce = 0%, Cumulative CPU4.36 sec

2015-06-27 16:56:31,123 Stage-1map = 78%,  reduce = 0%, Cumulative CPU6.21 sec

2015-06-27 16:56:34,698 Stage-1map = 100%,  reduce = 0%, Cumulative CPU7.37 sec

MapReduce Total cumulative CPUtime: 7 seconds 370 msec

Ended Job =job_1435392961740_0012

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 7.37 sec   HDFS Read: 348355875 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:7 seconds 370 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 45.678 seconds, Fetched: 1 row(s)

 

(3)  建立索引

hive (hive)> create indexuserbook_bookid_idx on table userbook(book_id) as 'COMPACT' WITH DEFERREDREBUILD;

(4)  建立索引後再執行查詢

hive (hive)> select * fromuserbook where book_id = '15999998838';

Query ID =hadoop_20150627170019_5bb5514a-4c8e-4c47-9347-ed0657e1f2ff

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there's no reduce operator

Starting Job =job_1435392961740_0013, Tracking URL = http://gpmaster:8088/proxy/application_1435392961740_0013/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0013

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 17:00:30,429 Stage-1map = 0%,  reduce = 0%

2015-06-27 17:00:54,003 Stage-1map = 50%,  reduce = 0%, Cumulative CPU7.43 sec

2015-06-27 17:00:56,181 Stage-1map = 78%,  reduce = 0%, Cumulative CPU9.66 sec

2015-06-27 17:00:58,417 Stage-1map = 100%,  reduce = 0%, Cumulative CPU10.83 sec

MapReduce Total cumulative CPUtime: 10 seconds 830 msec

Ended Job =job_1435392961740_0013

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 10.83 sec   HDFS Read: 348356271 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:10 seconds 830 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 40.549 seconds, Fetched: 1 row(s)

可以看到建立索引後,速度還是稍快一點的。

其實對於這種簡單的查詢,通過我們的設定,可以不用啟動Map/Reduce的,而是啟動Fetch task,直接從HDFS檔案中filter過濾出需要的資料,需要設定如下參數:

set hive.fetch.task.conversion=more;

hive (hive)> select * fromuserbook where book_id = '15999998838';

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 0.093 seconds,Fetched: 1 row(s)

可以看到速度更快了,畢竟省略掉了開啟MR任務,執行效率提高不少。



參考:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing


相關文章

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.