這次給大家帶來python如何取得二維數組局部峰值,使用python取得二維數組局部峰值的注意事項有哪些,下面就是實戰案例,一起來看一下。
題目的意思大致是在一個n*m的二維數組中,找到一個局部峰值。峰值要求大於相鄰的四個元素(數組邊界以外視為負無窮),比如最後我們找到峰值A[j][i],則有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]。返回該峰值的座標和值。
當然,最簡單直接的方法就是遍曆所有數組元素,判斷是否為峰值,時間複雜度為O(n^2)
再最佳化一點求每一行(列)的最大值,再通過二分法找最大值列的峰值(具體方法可見一維數組求峰值),這種演算法時間複雜度為O(logn)
這裡討論的是一種複雜度為O(n)的演算法,演算法思路分為以下幾步:
1、找“田”字。包括外圍的四條邊和中間橫豎兩條邊(圖中綠色部分),比較其大小,找到最大值的位置。(圖中的7)
2、找到田字中最大值後,判斷它是不是局部峰值,如果是返回該座標,如果不是,記錄找到相鄰四個點中最大值座標。通過該座標所在的象限縮小範圍,繼續比較下一個田字
3、當範圍縮小到3*3時必定會找到局部峰值(也可能之前就找到了)
關於為什麼我們選擇的範圍內一定存在峰值,大家可以這樣想,首先我們有一個圈,我們已知有圈內至少有一個元素大於這個圈所有的元素,那麼,是不是這個圈中一定有一個最大值?
可能說得有點繞,但是多想想應該能夠理解,也可以用數學的反證法來證明。
演算法我們理解後接下來就是代碼實現了,這裡我用的語言是python(初學python,可能有些用法上不夠簡潔請見諒),先上代碼:
import numpy as npdef max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sitdef dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col nub = e1-s1 temp = 0 sit_row = 0 sit_col = 0 for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中間排 list[e1][s2+i], #最後排 list[s1+i][s2], #第一列 list[s1+i][m2], #中間列 list[s1+i][e2], #最後列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_col = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_col = m2 t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1 if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2)f = open("demo.txt","r")list = f.read()list = list.split("\n") #對行進行切片list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的圍牆for i in range(len(list)): #對列進行切片 list[i] = list[i].split() list[i] = ["0"]+list[i]+["0"] #加左右的圍牆list = np.array(list).astype(np.int32)row_n = len(list)col_n = len(list[0])ans_sit = dp(0,0,row_n-1,col_n-1)print("找到峰值點位於:",ans_sit)print("該峰值點大小為:",list[ans_sit[0]+1,ans_sit[1]+1])f.close()
首先我的輸入寫在txt文字檔裡,通過字串轉換變為二維數組,具體轉換過程可以看我上一篇部落格——python中字串轉換為二維數組。(需要注意的是如果在windows環境中split後的列表沒有空尾巴,所以不用加list.pop()這句話)。有的變動是我在二維數組四周加了“0”的圍牆。加圍牆可以再我們判斷峰值的時候不用考慮邊界問題。
max_sit(*n)函數用於找到多個值中最大值的位置,返回其位置,python的內構的max函數只能返回最大值,所以還是需要自己寫,*n表示不定長參數,因為我需要在比較田和十(判斷峰值)都用到這個函數
def max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sit
dp(s1,s2,e1,e2)函數中四個參數的分別可看為startx,starty,endx,endy。即我們尋找範圍左上方和右下角的座標值。
m1,m2分別是row 和col的中間值,也就是田字的中間。
def dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col
依次比較3行3列中的值找到最大值,注意這裡要求二維數組為正方形,如果為矩形需要做調整
for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中間排 list[e1][s2+i], #最後排 list[s1+i][s2], #第一列 list[s1+i][m2], #中間列 list[s1+i][e2], #最後列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_row = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_row = m2
判斷田字中最大值是不是峰值,並找不出相鄰最大值
t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1
縮小範圍,遞迴求解
if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2)
好了,到這裡代碼基本分析完了。如果還有不清楚的地方歡迎下方留言。
除了這種演算法外,我也寫一種貪心演算法來求解這道題,只可惜最壞的情況下演算法複雜度還是O(n^2),QAQ。
大體的思路就是從中間位置起找相鄰4個點中最大的點,繼續把該點來找相鄰最大點,最後一定會找到一個峰值點,有興趣的可以看一下,上代碼:
#!/usr/bin/python3def dp(n): temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9]) #中 上 左 右 下 sit = temp.index(max(temp)) if(sit==0): return str[n] elif(sit==1): return dp(n-9) elif(sit==2): return dp(n-1) elif(sit==3): return dp(n+1) else: return dp(n+9)f = open("/home/nancy/案頭/demo.txt","r")list = f.read()list = list.replace(" ","").split() #轉換為列表row = len(list)col = len(list[0])str="0"*(col+3)for x in list: #加圍牆 二維變一維 str+=x+"00"str+="0"*(col+1)mid = int(len(str)/2)print(str,mid)p = dp(mid)print (p)f.close()
相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!
推薦閱讀:
Python介面使用OpenCV的方法
Python變數賦值的步奏詳解