標籤:
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
解題思路一:
暴力枚舉
共N^2量級個子串(從下標零開始),每次檢查需一個for迴圈,等於是3重for迴圈,時間複雜度O(n^3)
解題思路二:
動態規劃
設定一個表格table[][],其中table[i][j]表示substring(i,j+1)是不是Palindromic,時間複雜度為O(n^2)空間複雜度也為O(n^2)。
Java代碼如下:
static public String longestPalindrome(String s) {if(s.length()==1)return s; int[][] table=new int[s.length()][s.length()]; int beginIndex = 0,endIndex = 0; //初始化第一、第二條斜線 for(int i=0;i<s.length();i++){ table[i][i]=1; if(i==s.length()-1)break; if(s.charAt(i)==s.charAt(i+1)){ table[i][i+1]=1; beginIndex=i; endIndex=i+1; } } //給第k條斜線賦值 for(int k=2;k<s.length();k++){ for(int i=0;i<s.length()-k;i++){ if(table[i+1][i+k-1]==1&&s.charAt(i)==s.charAt(i+k)){ table[i][i+k]=1; beginIndex=i; endIndex=i+k; } } } printTable(table); return s.substring(beginIndex,endIndex+1); }public static void printTable(int table[][]){ for(int i=0;i<table.length;i++){ for(int j=0;j<table[i].length;j++){ System.out.print(table[i][j]+" "); } System.out.println(""); }}
提交結果,TimeExceed。證明時間複雜度為O(n^2)是不能提交通過的。
解題思路三:
中心法,對S中每一個字元及重複的雙字元為中心,進行遍曆。時間複雜度為O(n^2),在leetcode上竟然Accepted!
Java代碼如下:
static public String longestPalindrome(String s) {if (s.length() == 1) return s;String longest = s.substring(0, 1);for (int i = 0; i < s.length(); i++) {//檢查單字元中心String tmp = helper(s, i, i);if (tmp.length() > longest.length()) longest = tmp;//檢查多字元中心tmp = helper(s, i, i + 1);if (tmp.length() > longest.length()) longest = tmp;} return longest;}public static String helper(String s, int begin, int end) {while (begin >= 0 && end <= s.length() - 1 && s.charAt(begin) == s.charAt(end)) {begin--;end++;}return s.substring(begin + 1, end);}
解題思路四:
Manacher’s algorithm
Java for LeetCode 005 Longest Palindromic Substring