在開發手機程式時,總是希望壓縮網路傳輸的資訊,以減少流量。本文僅以哈夫曼編碼為引導,拋磚引玉,實現壓縮功能。
大家可能會想,程式和第三方提供了很多壓縮方式,何必自己寫壓縮代碼呢?不錯,如GZIP這樣的壓縮公用程式很多,可是在某些情況下(如常值內容小且字元不重複),GZIP壓縮後會比原始文本還要大。所以在某些特殊情況下用自己的壓縮方式可以更優。
大家可能早已忘記了在學校學習的哈夫曼知識,可以先在百度百科瞭解一下哈夫曼知識
http://baike.baidu.com/view/127820.htm
哈夫曼思想:統計文本字元重複率,求出各字元權值,再構造出一顆最優二叉樹(又稱哈夫曼樹),然後給每個葉子結點產生一個以位(bit)為單位的碼值,每個碼值不能做為其他碼值的首碼,再將碼值合并以每8個產生一個位元組。
package com.huffman;/** * 結點 * @author Davee */public class Node implements Comparable<Node> { int weight;//權值 Node leftChild;//左孩子結點 Node rightChild;//右孩子結點 String huffCode; private boolean isLeaf;//是否是葉子 Character value; public Node(Character value, int weight) { this.value = value; this.weight = weight; this.isLeaf = true; } public Node(int weight, Node leftChild, Node rightChild) { this.weight = weight; this.leftChild = leftChild; this.rightChild = rightChild; } public void increaseWeight(int i) { weight += i; } public boolean isLeaf() { return isLeaf; } @Override public int compareTo(Node o) { return this.weight - o.weight; }}
package com.huffman;import java.math.BigInteger;import java.util.ArrayList;import java.util.Collections;import java.util.HashMap;import java.util.Map;import java.util.TreeMap;public class HuffmanTree { private boolean debug = false; private HashMap<Character, Node> nodeMap; private ArrayList<Node> nodeList; public HuffmanTree() { nodeMap = new HashMap<Character, Node>(); nodeList = new ArrayList<Node>(); } public void setDebug(boolean debug) { this.debug = debug; } public String decode(Map<String, Character> codeTable, String binary) { int begin = 0, end = 1, count = binary.length(); StringBuffer sb = new StringBuffer(); while (end <= count) { String key = binary.substring(begin, end); if (codeTable.containsKey(key)) { sb.append(codeTable.get(key)); begin = end; } else { } end++; } return sb.toString(); } public String encode(String originText) { if (originText == null) return null; calculateWeight(originText); // if (debug) printNodes(nodeList); Node root = generateHuffmanTree(nodeList); generateHuffmanCode(root, ""); if (debug) printNodes(root); StringBuffer sb = new StringBuffer(); for (Character key : originText.toCharArray()) { sb.append(nodeMap.get(key).huffCode); } if (debug) System.out.println("二進位:"+sb.toString()); return sb.toString(); } /** * 計算葉子權值 * @param text */ private void calculateWeight(String text) { for (Character c : text.toCharArray()) { if (nodeMap.containsKey(c)) { nodeMap.get(c).increaseWeight(1);//權值加1 } else { Node leafNode = new Node(c, 1); nodeList.add(leafNode); nodeMap.put(c, leafNode); } } } /** * 產生哈夫曼樹 * @param nodes */ private Node generateHuffmanTree(ArrayList<Node> nodes) { Collections.sort(nodes); while(nodes.size() > 1) { Node ln = nodes.remove(0); Node rn = nodes.remove(0); insertSort(nodes, new Node(ln.weight + rn.weight, ln, rn)); } Node root = nodes.remove(0); nodes = null; return root; } /** * 插入排序 * @param sortedNodes * @param node */ private void insertSort(ArrayList<Node> sortedNodes, Node node) { if (sortedNodes == null) return; int weight = node.weight; int min = 0, max = sortedNodes.size(); int index; if (sortedNodes.size() == 0) { index = 0; } else if (weight < sortedNodes.get(min).weight) { index = min;//插入到第一個 } else if (weight >= sortedNodes.get(max-1).weight) { index = max;//插入到最後 } else { index = max/2; for (int i=0, count=max/2; i<=count; i++) { if (weight >= sortedNodes.get(index-1).weight && weight < sortedNodes.get(index).weight) { break; } else if (weight < sortedNodes.get(index).weight) { max = index; } else { min = index; } index = (max + min)/2; } } sortedNodes.add(index, node); } private void generateHuffmanCode(Node node, String code) { if (node.isLeaf()) node.huffCode = code; else { generateHuffmanCode(node.leftChild, code + "0"); generateHuffmanCode(node.rightChild, code + "1"); } } /** * 產生碼錶 * @return */ public Map<String, Character> getCodeTable() { Map<String, Character> map = new HashMap<String, Character>(); for (Node node : nodeMap.values()) { map.put(node.huffCode, node.value); } return map; } /** * 列印節點資訊 * @param root */ private void printNodes(Node root) { System.out.println("字元 權值 哈夫碼"); printTree(root); } private void printTree(Node root) { if (root.isLeaf()) System.out.println((root.value == null ? " " : root.value)+" "+root.weight+" "+(root.huffCode == null ? "" : root.huffCode)); if (root.leftChild != null) printTree(root.leftChild); if (root.rightChild != null) printTree(root.rightChild); } /** * 列印節點資訊 * @param nodes */ private void printNodes(ArrayList<Node> nodes) { System.out.println("字元 權值 哈夫碼"); for (Node node : nodes) { System.out.println(node.value+" "+node.weight+" "+node.huffCode); } }}
package com.test;import java.util.Map;import com.huffman.HuffUtils;import com.huffman.HuffmanTree;public class Test { public static void main(String[] args) { String originText = "abcdacaha"; HuffmanTree huffmanTree = new HuffmanTree(); huffmanTree.setDebug(true);//測試 String binary = huffmanTree.encode(originText); byte[] bytes = HuffUtils.binary2Bytes(binary); Map<String, Character> codeTable = huffmanTree.getCodeTable(); int lastByteNum = binary.length() % 8; System.out.println(bytes.length); //將bytes、codeTable、 lastByteNum傳遞到伺服器端 //省略。。。。。。 /* 伺服器端解析 接收到參數,並轉換成bytes、relationMap、 lastByteNum */ String fullBinary = HuffUtils.bytes2Binary(bytes, lastByteNum); System.out.println("伺服器二進位:"+fullBinary); String retrieveText = huffmanTree.decode(codeTable, fullBinary); System.out.println("恢複文本:"+retrieveText); }}