標籤:
排序一直以來都是讓我很頭疼的事,以前上《資料結構》打醬油去了,整個學期下來才勉強能寫出個冒泡排序。由於下半年要準備工作了,也知道排序演算法的重要性(據說是面試必問的知識點),所以又花了點時間重新研究了一下。
排序大的分類可以分為兩種:內排序和外排序。在排序過程中,全部記錄存放在記憶體,則稱為內排序,如果排序過程中需要使用外存,則稱為外排序。下面講的排序都是屬於內排序。
內排序有可以分為以下幾類:
(1)、插入排序:直接插入排序、二分法插入排序、希爾排序。
(2)、選擇排序:簡單選擇排序、堆排序。
(3)、交換排序:冒泡排序、快速排序。
(4)、歸併排序
(5)、基數排序
一、插入排序
•思想:每步將一個待排序的記錄,按其順序碼大小插入到前面已經排序的字序列的合適位置,直到全部插入排序完為止。•關鍵問題:在前面已經排好序的序列中找到合適的插入位置。•方法:–直接插入排序–二分插入排序–希爾排序
①直接插入排序(從後向前找到合適位置後插入)
1、基本思想:每步將一個待排序的記錄,按其順序碼大小插入到前面已經排序的字序列的合適位置(從後向前找到合適位置後),直到全部插入排序完為止。
2、執行個體
3、java實現
1 package com.sort; 2 3 public class 直接插入排序 { 4 5 public static void main(String[] args) { 6 int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1}; 7 System.out.println("排序之前:"); 8 for (int i = 0; i < a.length; i++) { 9 System.out.print(a[i]+" ");10 }11 //直接插入排序12 for (int i = 1; i < a.length; i++) {13 //待插入元素14 int temp = a[i];15 int j;16 /*for (j = i-1; j>=0 && a[j]>temp; j--) {17 //將大於temp的往後移動一位18 a[j+1] = a[j];19 }*/20 for (j = i-1; j>=0; j--) {21 //將大於temp的往後移動一位22 if(a[j]>temp){23 a[j+1] = a[j];24 }else{25 break;26 }27 }28 a[j+1] = temp;29 }30 System.out.println();31 System.out.println("排序之後:");32 for (int i = 0; i < a.length; i++) {33 System.out.print(a[i]+" ");34 }35 }36 37 }
4、分析
直接插入排序是穩定的排序。關於各種演算法的穩定性分析可以參考http://www.cnblogs.com/Braveliu/archive/2013/01/15/2861201.html
檔案初態不同時,直接插入排序所耗費的時間有很大差異。若檔案初態為正序,則每個待插入的記錄只需要比較一次就能夠找到合適的位置插入,故演算法的時間複雜度為O(n),這時最好的情況。若初態為反序,則第i個待插入記錄需要比較i+1次才能找到合適位置插入,故時間複雜度為O(n2),這時最壞的情況。
直接插入排序的平均時間複雜度為O(n2)。
②二分法插入排序(按二分法找到合適位置插入)
1、基本思想:二分法插入排序的思想和直接插入一樣,只是找合適的插入位置的方式不同,這裡是按二分法找到合適的位置,可以減少比較的次數。
2、執行個體
3、java實現
1 package com.sort; 2 3 public class 二分插入排序 { 4 public static void main(String[] args) { 5 int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1}; 6 System.out.println("排序之前:"); 7 for (int i = 0; i < a.length; i++) { 8 System.out.print(a[i]+" "); 9 }10 //二分插入排序11 sort(a);12 System.out.println();13 System.out.println("排序之後:");14 for (int i = 0; i < a.length; i++) {15 System.out.print(a[i]+" ");16 }17 }18 19 private static void sort(int[] a) {20 for (int i = 0; i < a.length; i++) {21 int temp = a[i];22 int left = 0;23 int right = i-1;24 int mid = 0;25 while(left<=right){26 mid = (left+right)/2;27 if(temp<a[mid]){28 right = mid-1;29 }else{30 left = mid+1;31 }32 }33 for (int j = i-1; j >= left; j--) {34 a[j+1] = a[j];35 }36 if(left != i){37 a[left] = temp;38 }39 }40 }41 }
4、分析
當然,二分法插入排序也是穩定的。
二分插入排序的比較次數與待排序記錄的初始狀態無關,僅依賴於記錄的個數。當n較大時,比直接插入排序的最大比較次數少得多。但大於直接插入排序的最小比較次數。演算法的移動次數與直接插入排序演算法的相同,最壞的情況為n2/2,最好的情況為n,平均移動次數為O(n2)。
③希爾排序
1、基本思想:先取一個小於n的整數d1作為第一個增量,把檔案的全部記錄分成d1個組。所有距離為d1的倍數的記錄放在同一個組中。先在各組內進行直接插入排序;然後,取第二個增量d2<d1重複上述的分組和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有記錄放在同一組中進行直接插入排序為止。該方法實質上是一種分組插入方法。
2、執行個體
3、java實現
1 package com.sort; 2 3 //不穩定 4 public class 希爾排序 { 5 6 7 public static void main(String[] args) { 8 int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1}; 9 System.out.println("排序之前:");10 for (int i = 0; i < a.length; i++) {11 System.out.print(a[i]+" ");12 }13 //希爾排序14 int d = a.length;15 while(true){16 d = d / 2;17 for(int x=0;x<d;x++){18 for(int i=x+d;i<a.length;i=i+d){19 int temp = a[i];20 int j;21 for(j=i-d;j>=0&&a[j]>temp;j=j-d){22 a[j+d] = a[j];23 }24 a[j+d] = temp;25 }26 }27 if(d == 1){28 break;29 }30 }31 System.out.println();32 System.out.println("排序之後:");33 for (int i = 0; i < a.length; i++) {34 System.out.print(a[i]+" ");35 }36 }37 38 }
4、分析
我們知道一次插入排序是穩定的,但在不同的插入排序過程中,相同的元素可能在各自的插入排序中移動,最後其穩定性就會被打亂,所以希爾排序是不穩定的。
希爾排序的時間效能優於直接插入排序,原因如下:
(1)當檔案初態基本有序時直接插入排序所需的比較和移動次數均較少。 (2)當n值較小時,n和n2的差別也較小,即直接插入排序的最好時間複雜度O(n)和最壞時間複雜度0(n2)差別不大。 (3)在希爾排序開始時增量較大,分組較多,每組的記錄數目少,故各組內直接插入較快,後來增量di逐漸縮小,分組數逐漸減少,而各組的記錄數目逐漸增多,但由於已經按di-1作為距離排過序,使檔案較接近於有序狀態,所以新的一趟排序過程也較快。 因此,希爾排序在效率上較直接插人排序有較大的改進。 希爾排序的平均時間複雜度為O(nlogn)。
二、選擇排序•思想:每趟從待排序的記錄序列中選擇關鍵字最小的記錄放置到已排序表的最前位置,直到全部排完。•關鍵問題:在剩餘的待排序記錄序列中找到最小關鍵碼記錄。•方法:–直接選擇排序–堆排序 ①簡單的選擇排序 1、基本思想:在要排序的一組數中,選出最小的一個數與第一個位置的數交換;然後在剩下的數當中再找最小的與第二個位置的數交換,如此迴圈到倒數第二個數和最後一個數比較為止。 2、執行個體 3、java實現
1 package com.sort; 2 3 //不穩定 4 public class 簡單的選擇排序 { 5 6 public static void main(String[] args) { 7 int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8}; 8 System.out.println("排序之前:"); 9 for (int i = 0; i < a.length; i++) {10 System.out.print(a[i]+" ");11 }12 //簡單的選擇排序13 for (int i = 0; i < a.length; i++) {14 int min = a[i];15 int n=i; //最小數的索引16 for(int j=i+1;j<a.length;j++){17 if(a[j]<min){ //找出最小的數18 min = a[j];19 n = j;20 }21 }22 a[n] = a[i];23 a[i] = min;24 25 }26 System.out.println();27 System.out.println("排序之後:");28 for (int i = 0; i < a.length; i++) {29 System.out.print(a[i]+" ");30 }31 }32 33 }
4、分析
簡單選擇排序是不穩定的排序。
時間複雜度:T(n)=O(n2)。
②堆排序
1、基本思想:
堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
堆的定義下:具有n個元素的序列 (h1,h2,...,hn),若且唯若滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)時稱之為堆。在這裡只討論滿足前者條件的堆。由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項(大頂堆)。完全二 叉樹可以很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。
思想:初始時把要排序的數的序列看作是一棵順序儲存的二叉樹,調整它們的儲存序,使之成為一個 堆,這時堆的根節點的數最大。然後將根節點與堆的最後一個節點交換。然後對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點的堆,並對 它們作交換,最後得到有n個節點的有序序列。從演算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最後一個元素交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反覆調用滲透函數實現排序的函數。
2、執行個體
初始序列:46,79,56,38,40,84
建堆:
交換,從堆中踢出最大數
依次類推:最後堆中剩餘的最後兩個結點交換,踢出一個,排序完成。
3、java實現
1 package com.sort; 2 //不穩定 3 import java.util.Arrays; 4 5 public class HeapSort { 6 public static void main(String[] args) { 7 int[] a={49,38,65,97,76,13,27,49,78,34,12,64}; 8 int arrayLength=a.length; 9 //迴圈建堆 10 for(int i=0;i<arrayLength-1;i++){ 11 //建堆 12 buildMaxHeap(a,arrayLength-1-i); 13 //交換堆頂和最後一個元素 14 swap(a,0,arrayLength-1-i); 15 System.out.println(Arrays.toString(a)); 16 } 17 }18 //對data數組從0到lastIndex建大頂堆19 public static void buildMaxHeap(int[] data, int lastIndex){20 //從lastIndex處節點(最後一個節點)的父節點開始 21 for(int i=(lastIndex-1)/2;i>=0;i--){22 //k儲存正在判斷的節點 23 int k=i;24 //如果當前k節點的子節點存在 25 while(k*2+1<=lastIndex){26 //k節點的左子節點的索引 27 int biggerIndex=2*k+1;28 //如果biggerIndex小於lastIndex,即biggerIndex+1代表的k節點的右子節點存在29 if(biggerIndex<lastIndex){ 30 //若果右子節點的值較大 31 if(data[biggerIndex]<data[biggerIndex+1]){ 32 //biggerIndex總是記錄較大子節點的索引 33 biggerIndex++; 34 } 35 } 36 //如果k節點的值小於其較大的子節點的值 37 if(data[k]<data[biggerIndex]){ 38 //交換他們 39 swap(data,k,biggerIndex); 40 //將biggerIndex賦予k,開始while迴圈的下一次迴圈,重新保證k節點的值大於其左右子節點的值 41 k=biggerIndex; 42 }else{ 43 break; 44 } 45 }46 }47 }48 //交換49 private static void swap(int[] data, int i, int j) { 50 int tmp=data[i]; 51 data[i]=data[j]; 52 data[j]=tmp; 53 } 54 }
4、分析
堆排序也是一種不穩定的排序演算法。
堆排序優於簡單選擇排序的原因:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重複執行了這些比較操作。
堆排序可通過樹形結構儲存部分比較結果,可減少比較次數。
堆排序的最壞時間複雜度為O(nlogn)。堆序的平均效能較接近於最壞效能。由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的檔案。
三、交換排序
①冒泡排序
1、基本思想:在要排序的一組數中,對當前還未排好序的範圍內的全部數,自上而下對相鄰的兩個數依次進行比較和調整,讓較大的數往下沉,較小的往上冒。即:每當兩相鄰的數比較後發現它們的排序與排序要求相反時,就將它們互換。
2、執行個體
3、java實現
1 package com.sort; 2 3 //穩定 4 public class 冒泡排序 { 5 public static void main(String[] args) { 6 int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8}; 7 System.out.println("排序之前:"); 8 for (int i = 0; i < a.length; i++) { 9 System.out.print(a[i]+" ");10 }11 //冒泡排序12 for (int i = 0; i < a.length; i++) {13 for(int j = 0; j<a.length-i-1; j++){14 //這裡-i主要是每遍曆一次都把最大的i個數沉到最底下去了,沒有必要再替換了15 if(a[j]>a[j+1]){16 int temp = a[j];17 a[j] = a[j+1];18 a[j+1] = temp;19 }20 }21 }22 System.out.println();23 System.out.println("排序之後:");24 for (int i = 0; i < a.length; i++) {25 System.out.print(a[i]+" ");26 }27 }28 }
4、分析
冒泡排序是一種穩定的排序方法。
•若檔案初狀為正序,則一趟起泡就可完成排序,排序碼的比較次數為n-1,且沒有記錄移動,時間複雜度是O(n)•若檔案初態為逆序,則需要n-1趟起泡,每趟進行n-i次排序碼的比較,且每次比較都移動三次,比較和移動次數均達到最大值∶O(n2)•起泡排序平均時間複雜度為O(n2) ②快速排序 1、基本思想:選擇一個基準元素,通常選擇第一個元素或者最後一個元素,通過一趟掃描,將待排序列分成兩部分,一部分比基準元素小,一部分大於等於基準元素,此時基準元素在其排好序後的正確位置,然後再用同樣的方法遞迴地排序劃分的兩部分。 2、執行個體 3、java實現
package com.sort;//不穩定public class 快速排序 { public static void main(String[] args) { int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8}; System.out.println("排序之前:"); for (int i = 0; i < a.length; i++) { System.out.print(a[i]+" "); } //快速排序 quick(a); System.out.println(); System.out.println("排序之後:"); for (int i = 0; i < a.length; i++) { System.out.print(a[i]+" "); } } private static void quick(int[] a) { if(a.length>0){ quickSort(a,0,a.length-1); } } private static void quickSort(int[] a, int low, int high) { if(low<high){ //如果不加這個判斷遞迴會無法退出導致堆疊溢位異常 int middle = getMiddle(a,low,high); quickSort(a, 0, middle-1); quickSort(a, middle+1, high); } } private static int getMiddle(int[] a, int low, int high) { int temp = a[low];//基準元素 while(low<high){ //找到比基準元素小的元素位置 while(low<high && a[high]>=temp){ high--; } a[low] = a[high]; while(low<high && a[low]<=temp){ low++; } a[high] = a[low]; } a[low] = temp; return low; }}
4、分析
快速排序是不穩定的排序。
快速排序的時間複雜度為O(nlogn)。
當n較大時使用快排比較好,當序列基本有序時用快排反而不好。
四、歸併排序
1、基本思想:歸併(Merge)排序法是將兩個(或兩個以上)有序表合并成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合并為整體有序序列。
2、執行個體
3、java實現
1 package com.sort; 2 3 //穩定 4 public class 歸併排序 { 5 public static void main(String[] args) { 6 int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8}; 7 System.out.println("排序之前:"); 8 for (int i = 0; i < a.length; i++) { 9 System.out.print(a[i]+" ");10 }11 //歸併排序12 mergeSort(a,0,a.length-1);13 System.out.println();14 System.out.println("排序之後:");15 for (int i = 0; i < a.length; i++) {16 System.out.print(a[i]+" ");17 }18 }19 20 private static void mergeSort(int[] a, int left, int right) {21 if(left<right){22 int middle = (left+right)/2;23 //對左邊進行遞迴24 mergeSort(a, left, middle);25 //對右邊進行遞迴26 mergeSort(a, middle+1, right);27 //合并28 merge(a,left,middle,right);29 }30 }31 32 private static void merge(int[] a, int left, int middle, int right) {33 int[] tmpArr = new int[a.length];34 int mid = middle+1; //右邊的起始位置35 int tmp = left;36 int third = left;37 while(left<=middle && mid<=right){38 //從兩個數組中選取較小的數放入中間數組39 if(a[left]<=a[mid]){40 tmpArr[third++] = a[left++];41 }else{42 tmpArr[third++] = a[mid++];43 }44 }45 //將剩餘的部分放入中間數組46 while(left<=middle){47 tmpArr[third++] = a[left++];48 }49 while(mid<=right){50 tmpArr[third++] = a[mid++];51 }52 //將中間數組複製回原數組53 while(tmp<=right){54 a[tmp] = tmpArr[tmp++];55 }56 }57 }
4、分析
歸併排序是穩定的排序方法。
歸併排序的時間複雜度為O(nlogn)。
速度僅次於快速排序,為穩定排序演算法,一般用於對總體無序,但是各子項相對有序的數列。
五、基數排序
1、基本思想:將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。
2、執行個體
3、java實現
1 package com.sort; 2 3 import java.util.ArrayList; 4 import java.util.List; 5 //穩定 6 public class 基數排序 { 7 public static void main(String[] args) { 8 int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1}; 9 System.out.println("排序之前:");10 for (int i = 0; i < a.length; i++) {11 System.out.print(a[i]+" ");12 }13 //基數排序14 sort(a);15 System.out.println();16 System.out.println("排序之後:");17 for (int i = 0; i < a.length; i++) {18 System.out.print(a[i]+" ");19 }20 }21 22 private static void sort(int[] array) {23 //找到最大數,確定要排序幾趟24 int max = 0;25 for (int i = 0; i < array.length; i++) {26 if(max<array[i]){27 max = array[i];28 }29 }30 //判斷位元31 int times = 0;32 while(max>0){33 max = max/10;34 times++;35 }36 //建立十個隊列37 List<ArrayList> queue = new ArrayList<ArrayList>();38 for (int i = 0; i < 10; i++) {39 ArrayList queue1 = new ArrayList();40 queue.add(queue1);41 }42 //進行times次分配和收集43 for (int i = 0; i < times; i++) {44 //分配45 for (int j = 0; j < array.length; j++) {46 int x = array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);47 ArrayList queue2 = queue.get(x);48 queue2.add(array[j]);49 queue.set(x,queue2);50 }51 //收集52 int count = 0;53 for (int j = 0; j < 10; j++) {54 while(queue.get(j).size()>0){55 ArrayList<Integer> queue3 = queue.get(j);56 array[count] = queue3.get(0);57 queue3.remove(0);58 count++;59 }60 }61 }62 }63 }
4、分析
基數排序是穩定的排序演算法。
基數排序的時間複雜度為O(d(n+r)),d為位元,r為基數。
總結:
一、穩定性:
穩定:冒泡排序、插入排序、歸併排序和基數排序
不穩定:選擇排序、快速排序、希爾排序、堆排序
二、平均時間複雜度
O(n^2):直接插入排序,簡單選擇排序,冒泡排序。
在資料規模較小時(9W內),直接插入排序,簡單選擇排序差不多。當資料較大時,冒泡排序演算法的時間代價最高。效能為O(n^2)的演算法基本上是相鄰元素進行比較,基本上都是穩定的。
O(nlogn):快速排序,歸併排序,希爾排序,堆排序。
其中,快排是最好的, 其次是歸併和希爾,堆排序在資料量很大時效果明顯。
三、排序演算法的選擇
1.資料規模較小
(1)待排序列基本序的情況下,可以選擇直接插入排序;
(2)對穩定性不作要求宜用簡單選擇排序,對穩定性有要求宜用插入或冒泡
2.資料規模不是很大
(1)完全可以用記憶體空間,序列雜亂無序,對穩定性沒有要求,快速排序,此時要付出log(N)的額外空間。
(2)序列本身可能有序,對穩定性有要求,空間允許下,宜用歸併排序
3.資料規模很大
(1)對穩定性有求,則可考慮歸併排序。
(2)對穩定性沒要求,宜用堆排序
4.序列初始基本有序(正序),宜用直接插入,冒泡
參考資料:
http://blog.csdn.net/without0815/article/details/7697916 http://gengning938.blog.163.com/blog/static/128225381201141121326346/
java 各種排序演算法