標籤:style blog class c code java
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
Method I
這道題用的和Largest Rectangle in Histogram類似的演算法,都是用了一個棧。如果比棧頂小或者棧為空白,就push進棧;如果比棧頂大,就計算圍起來的面積。為了不重複計算面積,每次只計算,在棧頂以上,在棧頂的前一個數(pop之後的棧頂)和當前數圍起來的長方形面積(Line 13)。
1 class Solution { 2 public: 3 int trap(int A[], int n) { 4 int sum = 0; 5 stack<int> st; 6 7 for (int i = 0; i < n; ) { 8 if (st.empty()) { 9 st.push(i++);10 } else if (A[i] >= A[st.top()]) {11 int tmp = st.top();12 st.pop();13 if (!st.empty()) sum += (i - st.top() - 1) * (min(A[i], A[st.top()]) - A[tmp]);14 } else {15 st.push(i++);16 }17 }18 return sum;19 }20 };
Method II
網上有另外一種演算法,思路是算出每個位置可以存的雨量。就是把總雨量分攤到每個位置。當前位置的雨量由它的min(左邊最大值,右邊最大值)決定。照著思路重寫了一遍。
1 class Solution { 2 public: 3 int trap(int A[], int n) { 4 if (n == 0) return 0; 5 int sum = 0; 6 vector<int> lfmost(n, 0); 7 8 lfmost[0] = A[0]; 9 for (int i = 1; i < n; ++i) {10 lfmost[i] = lfmost[i - 1] > A[i - 1] ? lfmost[i - 1] : A[i - 1];11 }12 13 int max = A[n - 1];14 for (int j = n - 2; j >= 1; --j) {15 if (A[j + 1] > max) max = A[j + 1];16 int s = min(lfmost[j], max) - A[j];17 if (s > 0) sum += s;18 }19 return sum;20 }21 };