Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
class Solution {private: vector<vector<int> > ivvec;public: vector<vector<int> > combinationSum(vector<int> &candidates, int target) { vector<int> ivec; sort(candidates.begin(), candidates.end()); combinationSum(candidates, 0, target, ivec); return ivvec; } void combinationSum(vector<int> &candidates, int beg, int target, vector<int> ivec) { if (0 == target) { ivvec.push_back(ivec); return; } for (int idx = beg; idx < candidates.size(); ++idx) { if (target - candidates[idx] < 0) break; ivec.push_back(candidates[idx]); combinationSum(candidates, idx, target - candidates[idx], ivec); ivec.pop_back(); } }};
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
與上題區別不大,依舊是用DFS,主要的問題在於如何去重。
可以增加一個剪枝: 噹噹前元素跟前一個元素是相同的時候,如果前一個元素被取了,那當前元素可以被取,也可以不取,反過來如果前一個元素沒有取,那我們這個以及之後的所以相同元素都不能被取。(採用flag的向量作為標記元素是否被選取)
class Solution {private: vector<vector<int> > ivvec; vector<bool> flag;public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { vector<int> ivec; sort(num.begin(), num.end()); flag.resize(num.size()); for (int i = 0; i < flag.size(); ++i) flag[i] = false; combinationSum2(num, 0, ivec, target, 0); return ivvec; } void combinationSum2(vector<int> &num, int beg, vector<int> ivec, int target, int sum) { if (sum > target) return; if (sum == target) { ivvec.push_back(ivec); return; } for (int idx = beg; idx < num.size(); ++idx) { if (sum + num[idx] > target) continue; if (idx != 0 && num[idx] == num[idx - 1] && flag[idx - 1] == false) continue; flag[idx] = true; ivec.push_back(num[idx]); combinationSum2(num, idx + 1, ivec, target, sum + num[idx]); ivec.pop_back(); flag[idx] = false; } }};