標籤:
題目:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
代碼:oj測試通過 Runtime: 91 ms
1 class Solution: 2 # @param A, a list of integers 3 # @return an integer 4 def trap(self, A): 5 # special case 6 if len(A)<3: 7 return 0 8 # left most & right most 9 LENGTH=len(A)10 left_most = [0 for i in range(LENGTH)]11 right_most = [0 for i in range(LENGTH)]12 curr_max = 013 for i in range(LENGTH):14 if A[i] > curr_max:15 curr_max = A[i]16 left_most[i] = curr_max17 curr_max = 018 for i in range(LENGTH-1,-1,-1):19 if A[i] > curr_max:20 curr_max = A[i]21 right_most[i] = curr_max22 # sum the trap23 sum = 024 for i in range(LENGTH):25 sum = sum + max(0,min(left_most[i],right_most[i])-A[i])26 return sum
思路:
一句話:某個Position能放多少水,取決於左右兩邊最小的有這個Position的位置高。
可以想象一下實體環境,一個位置要能存住水,就得保證這個Position處於一個低洼的位置。怎麼才能滿足低洼位置的條件呢?左右兩邊都得有比這個position高的元素。如果才能保證左右兩邊都有比這個position高的元素存在呢?只要左右兩邊的最大值中較小的一個比這個Position大就可以了。
leetcode 【 Trapping Rain Water 】python 實現