alloc_bootmem_low_pages()定義在:include/linux/bootmem.h中,定義如下:
#define alloc_bootmem_low_pages(x) \
__alloc_bootmem_low(x, PAGE_SIZE, 0)
__alloc_bootmem_low()定義在:mm/bootmem.c,定義如下:
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
unsigned long goal)
{
bootmem_data_t *bdata;
void *ptr;
list_for_each_entry(bdata, &bdata_list, list) {
ptr = __alloc_bootmem_core(bdata, size, align, goal,
ARCH_LOW_ADDRESS_LIMIT);
if (ptr)
return ptr;
}
printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
panic("Out of low memory");
return NULL;
}
尋找bdata鏈表上的每個節點,這每個節點代表一個bitmap,當然x86預設配置上只有一個節點,該節點在bootmem allocator初始化時建立,並添加到這個鏈表中。
核心函數還是__alloc_bootmem_core(),該函數定義於:mm/bootmem.c,定義如下:
void * __init
__alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
unsigned long align, unsigned long goal, unsigned long limit)
{
unsigned long offset, remaining_size, areasize, preferred;
unsigned long i, start = 0, incr, eidx, end_pfn;
void *ret;
if (!size) {
printk("__alloc_bootmem_core(): zero-sized request\n");
BUG();
}
BUG_ON(align & (align-1));
if (limit && bdata->node_boot_start >= limit)
return NULL;
/* on nodes without memory - bootmem_map is NULL */
if (!bdata->node_bootmem_map)
return NULL;
end_pfn = bdata->node_low_pfn; // max_low_pfn
limit = PFN_DOWN(limit); // limit = 0xffffffff
if (limit && end_pfn > limit)
end_pfn = limit;
/*
* 處理node_boot_start不對齊的情況。
* @offset: offset + PFN_DOWN(bdata->node_boot_start)是align對齊的
*/
eidx = end_pfn - PFN_DOWN(bdata->node_boot_start); // eidx = max_low_pfn
offset = 0;
if (align && (bdata->node_boot_start & (align - 1UL)) != 0)
offset = align - (bdata->node_boot_start & (align - 1UL));
offset = PFN_DOWN(offset);
/*
* We try to allocate bootmem pages above 'goal'
* first, then we try to allocate lower pages.
*/
if (goal && goal >= bdata->node_boot_start && PFN_DOWN(goal) < end_pfn) {
// 相對於node_boot_start的位移量,只不過node_boot_start=0
// 如果不是0,這裡會出現歧義,因為在下面preferred將可能被賦值為last_success
// 而這個success很顯然不是某種位移量,而是物理地址。
preferred = goal - bdata->node_boot_start;
if (bdata->last_success >= preferred)
if (!limit || (limit && limit > bdata->last_success))
// last_success中儲存的是上次成功時的起始地址
preferred = bdata->last_success;
} else
preferred = 0;
/* 根據對齊調整要求,調整preferred, preferred是pfn */
preferred = PFN_DOWN(ALIGN(preferred, align)) + offset;
areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
/* incr表示在尋找記憶體時每次疊加幾個頁面 */
incr = align >> PAGE_SHIFT ? : 1;
restart_scan:
for (i = preferred; i < eidx; i += incr) {
unsigned long j;
i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
i = ALIGN(i, incr);
if (i >= eidx)
break;
if (test_bit(i, bdata->node_bootmem_map))
continue;
/* for迴圈中判斷從i是否有areasize個連續的空閑頁面,
* 如果沒有,則跳轉到fail_block繼續下一次的搜尋. */
for (j = i + 1; j < i + areasize; ++j) {
if (j >= eidx)
goto fail_block;
if (test_bit(j, bdata->node_bootmem_map))
goto fail_block;
}
start = i; /*如果在for迴圈中沒有退出,則說明從第i個頁面起一共有areasize個連續的頁面可供使用*/
goto found;
fail_block:
i = ALIGN(j, incr);
}
if (preferred > offset) {
preferred = offset;
/* 如果大於goal的記憶體不符合要求,轉到從offset開始的記憶體開始搜尋 */
goto restart_scan;
}
return NULL;
found:
bdata->last_success = PFN_PHYS(start);
BUG_ON(start >= eidx);
/*找到合適頁面後並沒有馬上把寫頁面返回,而是嘗試著把這次申請的頁面和上次申請的頁面進行合并,
* 以減少這兩次記憶體之間的空隙(記憶體片段),這樣做的前提是:上次申請記憶體的最後一頁和這次申請
* 記憶體的第一頁是連續的,在下面的if裡就是判斷這個前提,如果不連續,就不能進行合并了*/
/* if語句判斷這次找到和上次找到的是相鄰的兩頁,這樣才可能合并,否則進入else */
if (align < PAGE_SIZE &&
bdata->last_offset && bdata->last_pos+1 == start) {
offset = ALIGN(bdata->last_offset, align);
BUG_ON(offset > PAGE_SIZE);
remaining_size = PAGE_SIZE - offset;
if (size < remaining_size) { /*上次申請頁面剩餘的記憶體足夠這次使用*/
areasize = 0;
/* last_pos unchanged */
bdata->last_offset = offset + size;
ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
offset +
bdata->node_boot_start);
} else { /*上次申請頁面剩餘的記憶體不夠這次使用*/
remaining_size = size - remaining_size;
areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
offset +
bdata->node_boot_start);
bdata->last_pos = start + areasize - 1;
bdata->last_offset = remaining_size;
}
bdata->last_offset &= ~PAGE_MASK;
} else {
bdata->last_pos = start + areasize - 1;
bdata->last_offset = size & ~PAGE_MASK;
ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
}
for (i = start; i < start + areasize; i++)
if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
BUG();
memset(ret, 0, size);
return ret;
}