.4 __create_page_tables()
__create_page_tables()函數同樣也是位於arch/arm/kernel/head.S中,代碼如下:
__create_page_tables:
pgtbl r4 @ page table address
/*
* Clear the 16K level 1 swapper page table
*/
mov r0, r4
mov r3, #0
add r6, r0, #0x4000
1: str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
teq r0, r6
bne 1b
ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
/*
* Create identity mapping for first MB of kernel to
* cater for the MMU enable. This identity mapping
* will be removed by paging_init(). We use our current program
* counter to determine corresponding section base address.
*/
mov r6, pc, lsr #20 @ start of kernel section
orr r3, r7, r6, lsl #20 @ flags + kernel base
str r3, [r4, r6, lsl #2] @ identity mapping
/*
* Now setup the pagetables for our kernel direct
* mapped region.
*/
add r0, r4, #(KERNEL_START & 0xff000000) >> 18
str r3, [r0, #(KERNEL_START & 0x00f00000) >> 18]!
ldr r6, =(KERNEL_END - 1)
add r0, r0, #4
add r6, r4, r6, lsr #18
1: cmp r0, r6
add r3, r3, #1 << 20
strls r3, [r0], #4
bls 1b
#ifdef CONFIG_XIP_KERNEL
/*
* Map some ram to cover our .data and .bss areas.
*/
orr r3, r7, #(KERNEL_RAM_PADDR & 0xff000000)
.if (KERNEL_RAM_PADDR & 0x00f00000)
orr r3, r3, #(KERNEL_RAM_PADDR & 0x00f00000)
.endif
add r0, r4, #(KERNEL_RAM_VADDR & 0xff000000) >> 18
str r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!
ldr r6, =(_end - 1)
add r0, r0, #4
add r6, r4, r6, lsr #18
1: cmp r0, r6
add r3, r3, #1 << 20
strls r3, [r0], #4
bls 1b
#endif
/*
* Then map first 1MB of ram in case it contains our boot params.
*/
add r0, r4, #PAGE_OFFSET >> 18
orr r6, r7, #(PHYS_OFFSET & 0xff000000)
.if (PHYS_OFFSET & 0x00f00000)
orr r6, r6, #(PHYS_OFFSET & 0x00f00000)
.endif
str r6, [r0]
#ifdef CONFIG_DEBUG_LL
ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
/*
* Map in IO space for serial debugging.
* This allows debug messages to be output
* via a serial console before paging_init.
*/
ldr r3, [r8, #MACHINFO_PGOFFIO]
add r0, r4, r3
rsb r3, r3, #0x4000 @ PTRS_PER_PGD*sizeof(long)
cmp r3, #0x0800 @ limit to 512MB
movhi r3, #0x0800
add r6, r0, r3
ldr r3, [r8, #MACHINFO_PHYSIO]
orr r3, r3, r7
1: str r3, [r0], #4
add r3, r3, #1 << 20
teq r0, r6
bne 1b
#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
/*
* If we're using the NetWinder or CATS, we also need to map
* in the 16550-type serial port for the debug messages
*/
add r0, r4, #0xff000000 >> 18
orr r3, r7, #0x7c000000
str r3, [r0]
#endif
#ifdef CONFIG_ARCH_RPC
add r0, r4, #0x02000000 >> 18
orr r3, r7, #0x02000000
str r3, [r0]
add r0, r4, #0xd8000000 >> 18
str r3, [r0]
#endif
#endif
mov pc, lr
ENDPROC(__create_page_tables)
這段代碼是用來建立一級頁表的。這個初始頁表是給接下來要啟動並執行kernel代碼用的。因為核心代碼用的都是虛擬位址,在使用之前我們必須要建立MMU。 這裡的MMU只需要建立的頁表能識別核心代碼這部分的虛擬位址就夠了,也就是從KERNEL_START到KERNEL_END部分。
#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)
#define KERNEL_RAM_PADDR (PHYS_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif
.globl swapper_pg_dir
.equ swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000
.macro pgtbl, rd
ldr \rd, =(KERNEL_RAM_PADDR - 0x4000)
.endm
#ifdef CONFIG_XIP_KERNEL
#define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END _edata_loc
#else
#define KERNEL_START KERNEL_RAM_VADDR
#define KERNEL_END _end
#endif
從上述代碼我們可以看出,KERNEL_START就是c0008000,KERNEL_END等於_end。_end我們可以從vmlinux.lds.S中找到蹤跡。
另外需要強調的是,這裡建立的MMU 頁表是一級頁表的,是以1M為單位的;二級頁表(4K)不是在這裡建立的。Arm一級頁表的轉換關係如下:
從可以看出,一級頁表描述符的內容是物理位址區段(物理地址前12位)和一些MMU管理位合成的;一級頁表描述符的地址是由頁表地址基地址(31-14位)和虛擬位址前12位(31-20)合成的,它的最後兩位都是零,滿足32位地址對齊的方式。
建立一級頁表的過程就是將每一個一級頁表描述符(1M為單位)填入到每一個一級頁表描述符的地址。
1.5 __enable_mmu()
在建好一頁表之後,後面有幾句這樣的代碼:
ldr r13, __switch_data @ address to jump to after
@ mmu has been enabled
adr lr, __enable_mmu @ return (PIC) address
add pc, r10, #PROCINFO_INITFUNC
最後一句是跳轉到處理器初始化函數執行。我們的處理器是armv6,所以處理器初始化函數可在arch/arm/mm/pro_v6.S中找到:
ENTRY(cpu_v6_proc_init)
mov pc, lr
OK,到這裡就知道,目的就是跳轉到__enable_mmu()函數執行。至於r13,另有他用,在__enable_mmu()函數的最後可以看到。
建立好一級頁表後,這時我們就可以開啟MMU,就可以放心大膽地使用虛擬位址了。使能MMU的代碼如下:
__enable_mmu:
#ifdef CONFIG_ALIGNMENT_TRAP
orr r0, r0, #CR_A
#else
bic r0, r0, #CR_A
#endif
#ifdef CONFIG_CPU_DCACHE_DISABLE
bic r0, r0, #CR_C
#endif
#ifdef CONFIG_CPU_BPREDICT_DISABLE
bic r0, r0, #CR_Z
#endif
#ifdef CONFIG_CPU_ICACHE_DISABLE
bic r0, r0, #CR_I
#endif
mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
domain_val(DOMAIN_IO, DOMAIN_CLIENT))
mcr p15, 0, r5, c3, c0, 0 @ load domain access register
mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
b __turn_mmu_on
ENDPROC(__enable_mmu)
__turn_mmu_on:
mov r0, r0
mcr p15, 0, r0, c1, c0, 0 @ write control reg
mrc p15, 0, r3, c0, c0, 0 @ read id reg
mov r3, r3
mov r3, r3
mov pc, r13
ENDPROC(__turn_mmu_on)
這段代碼很簡單,就是把一級頁表的基地址放到CP15的c2中,然後開啟MMU。執行到最後,把r13賦值給pc,就是跳轉到__swtich_data處執行。
1.6 __mmap_switched()
我們可以在arch/arm/kernel/head-common.S找到__switch_data的定義:
__switch_data:
.long __mmap_switched
.long __data_loc @ r4
.long __data_start @ r5
.long __bss_start @ r6
.long _end @ r7
.long processor_id @ r4
.long __machine_arch_type @ r5
.long __atags_pointer @ r6
.long cr_alignment @ r7
.long init_thread_union + THREAD_START_SP @ sp
可見標號__switch_data的值就等同於__mmap_switched()函數的指標地址。__mmap_switch()函數定義如下:
__mmap_switched:
adr r3, __switch_data + 4
ldmia r3!, {r4, r5, r6, r7}
cmp r4, r5 @ Copy data segment if needed
1: cmpne r5, r6
ldrne fp, [r4], #4
strne fp, [r5], #4
bne 1b
mov fp, #0 @ Clear BSS (and zero fp)
1: cmp r6, r7
strcc fp, [r6],#4
bcc 1b
ldmia r3, {r4, r5, r6, r7, sp}
str r9, [r4] @ Save processor ID
str r1, [r5] @ Save machine type
str r2, [r6] @ Save atags pointer
bic r4, r0, #CR_A @ Clear 'A' bit
stmia r7, {r0, r4} @ Save control register values
b start_kernel
ENDPROC(__mmap_switched)
這段代碼很簡單,就是拷貝資料到資料區段;清BSS;然後儲存處理器ID,機器類型和atag指標到記憶體的相應位置(因為接下來既要跳到c語言環境執行了,必須要把之前有意義的寄存器加以儲存);跳轉到start_kernel()函數,進入作業系統環境。