machine learning in python:根據關鍵字合并多個表(構建組合feature)

來源:互聯網
上載者:User

標籤:機器學習   scikit-learn   合并多張表   組合特徵   

三張表;train_set.csv;test_set.csv;feature.csv。三張表通過object_id關聯。


<pre name="code" class="python"><strong><span style="font-size:18px;">import pandas as pdimport numpy as np# load training and test datasetstrain = pd.read_csv('../input/train_set.csv')test = pd.read_csv('../input/test_set.csv')features = pd.read_csv('../input/feature.csv')train = pd.merge(train,features,on='object_id',how='inner')test = pd.merge(test,features,on='object_id',how='inner')# drop useless columns and create labelstest = test.drop(['id', 'object_id'], axis = 1)labels = train.cost.valuestrain = train.drop(['object_id', 'cost'], axis = 1)</span></strong>



著作權聲明:本文為博主原創文章,未經博主允許不得轉載。

machine learning in python:根據關鍵字合并多個表(構建組合feature)

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.