[機器學習]kNN演算法python實現(執行個體:數字識別)

來源:互聯網
上載者:User

標籤:機器學習   python   演算法   numpy   

# 使用好任何機器學習演算法的前提是選好Features

from numpy import *import operatorfrom os import listdirdef classify0(inX, dataSet, labels, k):    dataSetSize = dataSet.shape[0]    diffMat = tile(inX, (dataSetSize,1)) - dataSet    sqDiffMat = diffMat**2    sqDistances = sqDiffMat.sum(axis=1)    distances = sqDistances**0.5    sortedDistIndicies = distances.argsort()         classCount={}              for i in range(k):        voteIlabel = labels[sortedDistIndicies[i]]        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]def createDataSet():    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])    labels = ['A','A','B','B']    return group, labelsdef file2matrix(filename):    fr = open(filename)    numberOfLines = len(fr.readlines())         #get the number of lines in the file    returnMat = zeros((numberOfLines,3))        #prepare matrix to return    classLabelVector = []                       #prepare labels return       fr = open(filename)    index = 0    for line in fr.readlines():        line = line.strip()        listFromLine = line.split('\t')        returnMat[index,:] = listFromLine[0:3]        classLabelVector.append(int(listFromLine[-1]))        index += 1    return returnMat,classLabelVector    def autoNorm(dataSet):    minVals = dataSet.min(0)    maxVals = dataSet.max(0)    ranges = maxVals - minVals    normDataSet = zeros(shape(dataSet))    m = dataSet.shape[0]    normDataSet = dataSet - tile(minVals, (m,1))    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide    return normDataSet, ranges, minVals   def datingClassTest():    hoRatio = 0.50      #hold out 10%    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file    normMat, ranges, minVals = autoNorm(datingDataMat)    m = normMat.shape[0]    numTestVecs = int(m*hoRatio)    errorCount = 0.0    for i in range(numTestVecs):        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])        if (classifierResult != datingLabels[i]): errorCount += 1.0    print "the total error rate is: %f" % (errorCount/float(numTestVecs))    print errorCount    def img2vector(filename):    returnVect = zeros((1,1024))    fr = open(filename)    for i in range(32):        lineStr = fr.readline()        for j in range(32):            returnVect[0,32*i+j] = int(lineStr[j])    return returnVectdef handwritingClassTest():    hwLabels = []    trainingFileList = listdir('trainingDigits')           #load the training set    m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        hwLabels.append(classNumStr)        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)    testFileList = listdir('testDigits')        #iterate through the test set    errorCount = 0.0    mTest = len(testFileList)    for i in range(mTest):        fileNameStr = testFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)        if (classifierResult != classNumStr): errorCount += 1.0    print "\nthe total number of errors is: %d" % errorCount    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

[機器學習]kNN演算法python實現(執行個體:數字識別)

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.