MySQL索引原理與慢查詢最佳化

來源:互聯網
上載者:User

標籤:

索引目的

   索引的目的在於提高查詢效率,可以類比字典,如果要查“mysql”這個單詞,我們肯定需要定位到m字母,然後從下往下找到y字母,再找到剩下的sql。如果沒有索引,那麼你可能需要把所有單詞看一遍才能找到你想要的,如果我想找到m開頭的單詞呢?或者w開頭的單詞呢?是不是覺得如果沒有索引,這個事情根本無法完成?

索引原理

   除了詞典,生活中隨處可見索引的例子,如火車站的車次表、圖書的目錄等。它們的原理都是一樣的,通過不斷的縮小想要獲得資料的範圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是我們總是通過同一種尋找方式來鎖定資料。

   資料庫也是一樣,但顯然要複雜許多,因為不僅面臨著等值查詢,還有範圍查詢(>、<、between、in)、模糊查詢(like)、並集查詢(or)等等。資料庫應該選擇怎麼樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把資料分成段,然後分段查詢呢?最簡單的如果1000條資料,1到100分成第一段,101到200分成第二段,201到300分成第三段……這樣查第250條資料,只要找第三段就可以了,一下子去除了90%的無效資料。但如果是1千萬的記錄呢,分成幾段比較好?稍有演算法基礎的同學會想到搜尋樹,其平均複雜度是lgN,具有不錯的查詢效能。但這裡我們忽略了一個關鍵的問題,複雜度模型是基於每次相同的操作成本來考慮的,資料庫實現比較複雜,資料儲存在磁碟上,而為了提高效能,每次又可以把部分資料讀入記憶體來計算,因為我們知道訪問磁碟的成本大概是訪問記憶體的十萬倍左右,所以簡單的搜尋樹難以滿足複雜的應用情境。

磁碟IO與預讀

   前面提到了訪問磁碟,那麼這裡先簡單介紹一下磁碟IO和預讀,磁碟讀取資料靠的是機械運動,每次讀取資料花費的時間可以分為尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁軌所需要的時間,主流磁碟一般在5ms以下;旋轉延遲就是我們經常聽說的磁碟轉速,比如一個磁碟7200轉,表示每分鐘能轉7200次,也就是說1秒鐘能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁碟讀出或將資料寫入磁碟的時間,一般在零點幾毫秒,相對於前兩個時間可以忽略不計。那麼訪問一次磁碟的時間,即一次磁碟IO的時間約等於5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一台500 -MIPS的機器每秒可以執行5億條指令,因為指令依靠的是電的性質,換句話說執行一次IO的時間可以執行40萬條指令,資料庫動輒十萬百萬乃至千萬級資料,每次9毫秒的時間,顯然是個災難。是電腦硬體延遲的對比圖,供大家參考:

   

   考慮到磁碟IO是非常高昂的操作,電腦作業系統做了一些最佳化,當一次IO時,不光把當前磁碟地址的資料,而是把相鄰的資料也都讀取到記憶體緩衝區內,因為局部預讀性原理告訴我們,當電腦訪問一個地址的資料的時候,與其相鄰的資料也會很快被訪問到。每一次IO讀取的資料我們稱之為一頁(page)。具體一頁有多大資料跟作業系統有關,一般為4k或8k,也就是我們讀取一頁內的資料時候,實際上才發生了一次IO,這個理論對於索引的資料結構設計非常有協助。

索引的資料結構

   前面講了生活中索引的例子,索引的基本原理,資料庫的複雜性,又講了作業系統的相關知識,目的就是讓大家瞭解,任何一種資料結構都不是憑空產生的,一定會有它的背景和使用情境,我們現在總結一下,我們需要這種資料結構能夠做些什麼,其實很簡單,那就是:每次尋找資料時把磁碟IO次數控制在一個很小的數量級,最好是常數數量級。那麼我們就想到如果一個高度可控的多路搜尋樹是否能滿足需求呢?就這樣,b+樹應運而生。

b+樹詳解

   

   如,是一顆b+樹,這裡只說一些重點,淺藍色的塊我們稱之為一個磁碟塊,可以看到每個磁碟塊包含幾個資料項目(深藍色所示)和指標(黃色所示),如磁碟塊1包含資料項目17和35,包含指標P1、P2、P3,P1表示小於17的磁碟塊,P2表示在17和35之間的磁碟塊,P3表示大於35的磁碟塊。真實的資料存在於葉子節點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節點只不儲存真實的資料,只儲存指引搜尋方向的資料項目,如17、35並不真實存在於資料表中。

b+樹的尋找過程

   ,如果要尋找資料項目29,那麼首先會把磁碟塊1由磁碟載入到記憶體,此時發生一次IO,在記憶體中用二分尋找確定29在17和35之間,鎖定磁碟塊1的P2指標,記憶體時間因為非常短(相比磁碟的IO)可以忽略不計,通過磁碟塊1的P2指標的磁碟地址把磁碟塊3由磁碟載入到記憶體,發生第二次IO,29在26和30之間,鎖定磁碟塊3的P2指標,通過指標載入磁碟塊8到記憶體,發生第三次IO,同時記憶體中做二分尋找找到29,結束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的資料,如果上百萬的資料尋找只需要三次IO,效能提高將是巨大的,如果沒有索引,每個資料項目都要發生一次IO,那麼總共需要百萬次的IO,顯然成本非常非常高。

b+樹性質

   1.通過上面的分析,我們知道IO次數取決於b+數的高度h,假設當前資料表的資料為N,每個磁碟塊的資料項目的數量是m,則有h=㏒(m+1)N,當資料量N一定的情況下,m越大,h越小;而m = 磁碟塊的大小 / 資料項目的大小,磁碟塊的大小也就是一個資料頁的大小,是固定的,如果資料項目占的空間越小,資料項目的數量越多,樹的高度越低。這就是為什麼每個資料項目,即索引欄位要盡量的小,比如int佔4位元組,要比bigint8位元組少一半。這也是為什麼b+樹要求把真實的資料放到葉子節點而不是內層節點,一旦放到內層節點,磁碟塊的資料項目會大幅度下降,導致樹增高。當資料項目等於1時將會退化成線性表。

   2.當b+樹的資料項目是複合的資料結構,比如(name,age,sex)的時候,b+數是按照從左至右的順序來建立搜尋樹的,比如當(張三,20,F)這樣的資料來檢索的時候,b+樹會優先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最後得到檢索的資料;但當(20,F)這樣的沒有name的資料來的時候,b+樹就不知道下一步該查哪個節點,因為建立搜尋樹的時候name就是第一個比較因子,必須要先根據name來搜尋才能知道下一步去哪裡查詢。比如當(張三,F)這樣的資料來檢索時,b+樹可以用name來指定搜尋方向,但下一個欄位age的缺失,所以只能把名字等於張三的資料都找到,然後再匹配性別是F的資料了, 這個是非常重要的性質,即索引的最左匹配特性。

慢查詢最佳化

   關於MySQL索引原理是比較枯燥的東西,大家只需要有一個感性的認識,並不需要理解得非常透徹和深入。我們回頭來看看一開始我們說的慢查詢,瞭解完索引原理之後,大家是不是有什麼想法呢?先總結一下索引的幾大基本原則

建索引的幾大原則

   1.最左首碼匹配原則,非常重要的原則,mysql會一直向右匹配直到遇到範圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。

   2.=和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢最佳化工具會幫你最佳化成索引可以識別的形式

   3.盡量選擇區分度高的列作為索引,區分度的公式是count(distinct col)/count(*),表示欄位不重複的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別欄位可能在大資料面前區分度就是0,那可能有人會問,這個比例有什麼經驗值嗎?使用情境不同,這個值也很難確定,一般需要join的欄位我們都要求是0.1以上,即平均1條掃描10條記錄

   4.索引列不能參與計算,保持列“乾淨”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是資料表中的欄位值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’);

   5.盡量的擴充索引,不要建立索引。比如表中已經有a的索引,現在要加(a,b)的索引,那麼只需要修改原來的索引即可

一條簡單sql的查詢最佳化

   select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2;

   根據最左匹配原則,該sql語句的索引應該是status、operator_id、type、operate_time的聯合索引;其中status、operator_id、type的順序可以顛倒;

   比如還有如下查詢

   select * from task where status = 0 and type = 12 limit 10;

   select count(*) from task where status = 0 ;

   那麼索引建立成(status,type,operator_id,operate_time)就是非常正確的,因為可以覆蓋到所有情況。這個就是利用了索引的最左匹配的原則

查詢最佳化神器 - explain命令

   關於explain命令相信大家並不陌生,具體用法和欄位含義可以參考官網explain-output,這裡需要強調rows是核心指標,絕大部分rows小的語句執行一定很快(有例外,下面會講到)。所以最佳化語句基本上都是在最佳化rows。

慢查詢最佳化基本步驟

   0.先運行看看是否真的很慢,注意設定SQL_NO_CACHE

   1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每個欄位分別查詢,看哪個欄位的區分度最高

   2.explain查看執行計畫,是否與1預期一致(從鎖定記錄較少的表開始查詢)

   3.order by limit 形式的sql語句讓排序的表優先查

   4.瞭解業務方使用情境

   5.加索引時參照建索引的幾大原則

   6.觀察結果,不符合預期繼續從0分析

MySQL索引原理與慢查詢最佳化

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.