在電腦系統中,數值一律用補碼來表示(儲存)。
主要原因:使用補碼,可以將符號位和其它位統一處理;同時,減法也可按加法來處理。另外,兩個用補
碼錶示的數相加時,如果最高位(符號位)有進位,則進位被捨棄。
2、補碼與原碼的轉換過程幾乎是相同的。
數值的補碼錶示也分兩種情況:
(1)正數的補碼:與原碼相同。
例如,+9的補碼是00001001。
(2)負數的補碼:符號位為1,其餘位為該數絕對值的原碼按位取反;然後整個數加1。
例如,-7的補碼:因為是負數,則符號位為“1”,整個為10000111;其餘7位為-7的絕對值+7的原碼
0000111按位取反為1111000;再加1,所以-7的補碼是11111001。
已知一個數的補碼,求原碼的操作分兩種情況:
(1)如果補碼的符號位為“0”,表示是一個正數,所以補碼就是該數的原碼。
(2)如果補碼的符號位為“1”,表示是一個負數,求原碼的操作可以是:符號位為1,其餘各位取
反,然後再整個數加1。
例如,已知一個補碼為11111001,則原碼是10000111(-7):因為符號位為“1”,表示是一個負
數,所以該位不變,仍為“1”;其餘7位1111001取反後為0000110;再加1,所以是10000111。
在“閑扯原碼、反碼、補碼”檔案中,沒有提到一個很重要的概念“模”。我在這裡稍微介紹一下“模”
的概念:
“模”是指一個計量系統的計數範圍。如時鐘等。電腦也可以看成一個計量機器,它也有一個計量範
圍,即都存在一個“模”。例如:
時鐘的計量範圍是0~11,模=12。
表示n位的電腦計量範圍是0~2(n)-1,模=2(n)。【註:n表示指數】
“模”實質上是計量器產生“溢出”的量,它的值在計量器上表示不出來,計量器上只能表示出模的
餘數。任何有模的計量器,均可化減法為加法運算。
例如: 假設當前時針指向10點,而準確時間是6點,調整時間可有以下兩種撥法:
一種是倒撥4小時,即:10-4=6
另一種是順撥8小時:10+8=12+6=6
在以12模的系統中,加8和減4效果是一樣的,因此凡是減4運算,都可以用加8來代替。
對“模”而言,8和4互為補數。實際上以12模的系統中,11和1,10和2,9和3,7和5,6和6都有這個特
性。共同的特點是兩者相加等於模。
對於電腦,其概念和方法完全一樣。n位電腦,設n=8, 所能表示的最大數是11111111,若再
加1稱為100000000(9位),但因只有8位,最高位1自然丟失。又回了00000000,所以8位二進位系統的
模為2(8)。 在這樣的系統中減法問題也可以化成加法問題,只需把減數用相應的補數表示就可以
了。把補數用到電腦對數的處理上,就是補碼。
另外兩個概念
一的補碼(one's complement) 指的是正數=原碼,負數=反碼
而二的補碼(two's complement) 指的就是通常所指的補碼
數在電腦中是以二進位形式表示的。
數分為有符號數和無符號數。
原碼、反碼、補碼都是有符號定點數的表示方法。
一個有符號定點數的最高位為符號位,0是正,1是副。
以下都以8位整數為例,
原碼就是這個數本身的二進位形式。
例如
0000001 就是+1
1000001 就是-1
正數的反碼和補碼都是和原碼相同。
負數的反碼是將其原碼除符號位之外的各位求反
[-3]反=[10000011]反=11111100
負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。
[-3]補=[10000011]補=11111101
一個數和它的補碼是可逆的。
為什麼要設立補碼呢?
第一是為了能讓電腦執行減法:
[a-b]補=a補+(-b)補
第二個原因是為了統一正0和負0
正零:00000000
負零:10000000
這兩個數其實都是0,但他們的原碼卻有不同的表示。
但是他們的補碼是一樣的,都是00000000
特別注意,如果+1之後有進位的,要一直往前進位,包括符號位!(這和反碼是不同的!)
[10000000]補
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符號位變成了0)
有人會問
10000000這個補碼錶示的哪個數的補碼呢?
其實這是一個規定,這個數表示的是-128
所以n位補碼能表示的範圍是
-2^(n-1)到2^(n-1)-1
比n位原碼能表示的數多一個
又例:
1011
原碼:01011
反碼:01011 //正數時,反碼=原碼
補碼:01011 //正數時,補碼=原碼
-1011
原碼:11011
反碼:10100 //負數時,反碼為原碼取反
補碼:10101 //負數時,補碼為原碼取反+1
0.1101
原碼:0.1101
反碼:0.1101 //正數時,反碼=原碼
補碼:0.1101 //正數時,補碼=原碼
-0.1101
原碼:1.1101
反碼:1.0010 //負數時,反碼為原碼取反
補碼:1.0011 //負數時,補碼為原碼取反+1
總結:
在電腦內,定點數有3種標記法:原碼、反碼和補碼
所謂原碼就是前面所介紹的二進位定點標記法,即最高位為符號位,“0”表示正,“1”表示負,其餘位表示數值的大小。
反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
1、原碼、反碼和補碼的表示方法
(1) 原碼:在數值前直接加一符號位的標記法。
例如: 符號位 數值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:a. 數0的原碼有兩種形式:
[+0]原=00000000B [-0]原=10000000B
b. 8位二進位原碼的表示範圍:-127~+127
2)反碼:
正數:正數的反碼與原碼相同。
負數:負數的反碼,符號位為“1”,數值部分按位取反。
例如: 符號位 數值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:a. 數0的反碼也有兩種形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二進位反碼的表示範圍:-127~+127
3)補碼的表示方法
1)模的概念:把一個計量單位稱之為模或模數。例如,時鐘是以12進位進行計數迴圈的,即以12為模。在時鐘上,時針加上(正撥)12的整數位或減去(反撥)12的整數位,時針的位置不變。14點鐘在捨去模12後,成為(下午)2點鐘(14=14-12=2)。從0點出發逆時針撥10格即減去10小時,也可看成從0點出發順時針撥2格(加上2小時),即2點(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射為+2。由此可見,對於一個模數為12的迴圈系統來說,加2和減10的效果是一樣的;因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問題轉化成加法問題了(註:電腦的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法)。10和2對模12而言互為補數。
同理,電腦的運算組件與寄存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢出,又從頭開始計數。產生溢出的量就是計數器的模,顯然,8位位元,它的模數為2^8=256。在計算中,兩個互補的數稱為“補碼”。
2)補碼的表示: 正數:正數的補碼和原碼相同。
負數:負數的補碼則是符號位為“1”,數值部分按位取反後再在末位(最低位)加1。也就是“反碼+1”。
例如: 符號位 數值位
[+7]補= 0 0000111 B
[-7]補= 1 1111001 B
補碼在微型機中是一種重要的編碼形式,請注意:
a.採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真值。採用補碼進行運算,所得結果仍為補碼。
b.與原碼、反碼不同,數值0的補碼只有一個,即 [0]補=00000000B。
c.若字長為8位,則補碼所表示的範圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的範圍。