標籤:des style class blog code http
Check the difficulty of problems
Time Limit: 2000MS |
|
Memory Limit: 65536K |
Total Submissions: 4522 |
|
Accepted: 1993 |
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 20.9 0.91 0.90 0 0
Sample Output
0.972
Source
POJ Monthly,魯小石
題目大意:
有 M 道題目 T 支隊伍,N表示 最好 的隊 至少要做出N題 ,緊接下來T行M列,表示某隊做出某題 的機率為p ,問你每支隊至少做出1題,最好的隊至少做出N題的機率是多少?
解題思路:
一題動態規劃的題, 既然最好的隊至少做出N題,那麼用二維記錄,DP [t][f] 記錄還剩 t 支隊及是否出現超過N題的事件的機率。如果當前這支隊伍做出超過N題,那麼f置為1,否則還是f。彈了兩遍,第一遍因為忘記算做出0題的情況,第二遍因為遞迴中數組開得略大些超記憶體了。
解題代碼:
#include <iostream>#include <cstdio>using namespace std;const int maxt=1100;const int maxn=32;double dp[maxt][2];double p[maxt][maxn];int T,M,N;double DP(int t,int f){ if(t<=0) return f; if(dp[t][f]>-1.0) return dp[t][f]; double a[maxn][maxn],ans=0; a[0][0]=1; for(int i=1;i<=M;i++){ for(int j=0;j<=i;j++){ a[i][j]=0; if(j-1>=0) a[i][j]+=a[i-1][j-1]*p[t][i]; if(i-1>=j) a[i][j]+=a[i-1][j]*(1-p[t][i]); } } for(int i=1;i<N;i++) ans+=DP(t-1,f)*a[M][i]; for(int i=N;i<=M;i++) ans+=DP(t-1,1)*a[M][i]; return dp[t][f]=ans;}void input(){ for(int i=1;i<=T;i++){ dp[i][0]=dp[i][1]=-2.0; for(int j=1;j<=M;j++){ scanf("%lf",&p[i][j]); } }}void solve(){ printf("%.3f\n",DP(T,0));}int main(){ while(scanf("%d%d%d",&M,&T,&N)!=EOF && (T||M||N) ){ input(); solve(); } return 0;}