java實現像素級圖片檔案處理 收藏
朋友要求幫忙做一個圖片識別的小程式,因為要用在特定的環境下,所以決定採用java語言實現。首先用matlab實現了識別演算法的模擬,因為只是對特定的數字組合的識別,所以非常的簡單,放棄採用比較複雜的識別演算法,採用最普通的像素比較的識別演算法。(如果背景雜訊比較複雜,可以考慮先濾波後識別)在寫java程式的時候發現一些問題,網上關於圖片像素級操作的資料不是太多,有的還不是太正確,特此寫出自己的成果與大家分享。
核心類:BufferedImage,ImageIO
ImageIO類提供圖象讀寫介面,可以對URL,InputStream等操作,得到映像資訊十分的方便。
ImageIO在javax.imageio.*的包中,屬於jdk中的標準類。提供的方法有:
read() 例:BufferedImage imd=ImageIO.read(new File(file));
write() 例:ImageIO.write(imd, "JPEG", new File("C://test"+k+".gif"));
//具體方法可以尋找jdk doc
BufferedImage類是一個Image類的子類,與Image不同的是,它是在記憶體中建立和修改的,你可以顯示它也可以不顯示它,這就看你的具體需求了。這裡因為我用於映像的識別所以就不需要顯示出來了。你可以通過ImageIO的方法來讀取一個檔案到BufferedImage,也可以將其寫回一個檔案中去。類似的操作可以看前面的兩個方法。以及參考jdk doc
因為我要識別類似於身分識別驗證的一個數字串圖片,所以我考慮把這些數字分離出來,存在不同的映像內,這裡BufferedImage類提供一個很方便的辦法。
getSubimage(int left,int top,int width,int height)
例: BufferedImage newim[]=new BufferedImage[4];
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);
最後為了得到映像的像素,我們需要的就是得到像素的方法,這個方法有很多,這裡我介紹的是
getRGB(int x,int y) 得到特定像素點的RGB值。
例: pix=new int[10*18];pix[i*(10)+j]=newim[k].getRGB(j,i);
現在我們得到了像素,可以看出像素是一個一維數組,你如果不習慣可以考慮儲存在一個二維的數組中,然後就來實施你的看家演算法,什麼小波變換,拉普拉斯運算元,儘管來吧。怎麼樣是不是很方便呢?什麼你好像看不太懂,好給你一些來源程式好了,包括像素分解和識別演算法。
原始碼
/*
* Created on 2005-11-29
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
package com.syvin.image;
import java.awt.*;
import java.awt.image.*;
import java.io.FileOutputStream;
import java.io.*;
import java.io.InputStream;
import java.net.URL;
import javax.imageio.*;
public class MyImage{
BufferedImage imd;//待識別映像
private int iw,ih;//映像寬和高
public final static String path="D://jyy//app//tomcat//webapps//userlogon//a.jpg";
static public void main(String args[]) {
try{
MyImage app = new MyImage();//構造一個類
String s=app.getImageNum("C://無標題.bmp");//得到識別字串
System.out.println("recognize result"+s);
byte[] by=s.getBytes();
File f=new File("C://testfile.txt");
FileOutputStream fos=new FileOutputStream(f);//寫入一個結果檔案
fos.write(by);
fos.close();
}catch(Exception e){
e.printStackTrace();
}
}
//建構函式
public MyImage() throws IOException {
super("Image Test");
try{
}catch(Exception e){
e.printStackTrace();
}
}
//得到映像的值
public String getImageNum(String file){
StringBuffer sb=new StringBuffer("");
try{
imd=ImageIO.read(new File(file));//用ImageIO的靜態方法讀取映像
BufferedImage newim[]=new BufferedImage[4];
int []x=new int[4];
//將映像分成四塊,因為要處理的檔案有四個數字。
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);
for(int k=0;k<4;k++){
x[k]=0;
ImageIO.write(newim[k], "JPEG", new File("C://test"+k+".gif"));
this.iw=newim[k].getWidth(null);
this.ih=newim[k].getHeight(null);
pix=new int[iw*ih];
//因為是二值映像,這裡的方法將像素讀取出來的同時,轉換為0,1的映像數組。
for(int i=0;i<ih;i++){
for(int j=0;j<iw;j++){
pix[i*(iw)+j]=newim[k].getRGB(j,i);
if(pix[i*(iw)+j]==-1)
pix[i*(iw)+j]=0;
else pix[i*(iw)+j]=1;
x[k]=x[k]+pix[i*(iw)+j];
}
}
//得到像匹配的數字。
int r=this.getMatchNum(pix);
sb.append(r);
System.out.println("x="+x[k]);
}
}catch(Exception e){
e.printStackTrace();
}
return sb.toString();
}
//數字模板 0-9
static int[][] value={
//num 0;
{0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,1,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num 1
{0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num2
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,1,1,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num3
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,0,0,0,
0,1,1,0,0,0,1,1,0,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,1,1,0,0,0,1,1,0,0,
0,0,1,1,1,1,1,0,0,0,
0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num4
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,1,1,1,0,0,
0,0,0,0,1,1,1,1,0,0,
0,0,0,1,1,0,1,1,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,1,1,0,0,
0,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num5
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,
0,1,1,1,1,1,1,1,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,1,1,1,0,0,0,
0,1,1,1,0,0,1,1,0,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num6
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,1,1,1,0,0,0,
0,1,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num7
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,1,1,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num8
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,1,1,1,1,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num9
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,1,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,1,0,
0,0,0,1,1,1,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
}};
//映像像素相減取絕對值得到最小熵的結果。
public int getMatchNum(int[] pix){
int result=-1;
int temp=100;
int x;
for(int k=0;k<=9;k++){
x=0;
for(int i=0;i<pix.length;i++){
x=x+Math.abs(pix[i]-value[k][i]);
}
/*for(int a=0;a<18;a++){
for(int b=0;b<10;b++){
System.out.print(pix[a*10+b]+"-"+value[k][a*10+b]+"|");
}
System.out.println();
}*/
if(x<temp)
{
temp=x;
result=k;
}
}
return result;
}
}
本文來自CSDN部落格,轉載請標明出處:http://blog.csdn.net/jinyykiller/archive/2005/12/29/565584.aspx