python-優礦-牛市價差和熊市價差組合策略

來源:互聯網
上載者:User
#本文分析牛市看張價差和熊市看跌價差的組合策略效果:#牛市看漲價差採用買入平值看漲期權,賣出較高行權價的看漲期權#熊市看跌價差組合採用買入平值看跌期權,賣出較低行行權價的看跌期權#####實際上還有很多不同的方式構造價差組合###################################import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom lib.qiquan import*############################################################################################讀取50etf標的df=pd.read_excel('50etf_fund.xlsx')df.index=df['tradeDate']#擷取交易日期date=list(df['tradeDate'])####################################################################profit=[]for i in range(1,len(date)):          day=date[i]        etf_price_close=float(df[df['tradeDate'].isin([day])]['close'])        etf_price_open=float(df[df['tradeDate'].isin([day])]['open'])        secID_data_low=list(get_low(df,day)['secID'])        #print data        #擷取近月代碼        near_c_low=secID_data_low[-2]        near_p_low=secID_data_low[-1]         #####        secID_data_high=list(get_high(df,day)['secID'])        #print data        #擷取近月代碼        near_c_high=secID_data_high[-2]        near_p_high=secID_data_high[-1]         #擷取近月價格        secID_data_near=list(get_near(df,day)['secID'])        #print data        #擷取近月代碼        near_c_near=secID_data_near[-2]        near_p_near=secID_data_near[-1]         #####        option_c_data_low=DataAPI.MktOptdGet(tradeDate=day,                                           secID=near_c_low,optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        option_p_data_low=DataAPI.MktOptdGet(tradeDate=day,secID=near_p_low,                                             optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        option_c_data_high=DataAPI.MktOptdGet(tradeDate=day,                                           secID=near_c_high,optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        option_p_data_high=DataAPI.MktOptdGet(tradeDate=day,secID=near_p_high,                                             optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        option_c_data_near=DataAPI.MktOptdGet(tradeDate=day,                                           secID=near_c_near,optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        option_p_data_near=DataAPI.MktOptdGet(tradeDate=day,secID=near_p_near,                                             optID=u"",ticker=u"",beginDate=u"",endDate=u"",field=u"",pandas="1")        buy_condition=get_up(df,date,i,20)        #print buy_condition        if buy_condition==False:            money=(float(option_p_data_near['closePrice'])-float(option_p_data_near['openPrice'])-float(option_c_data_low['closePrice'])+float(option_c_data_low['openPrice']))*10000            profit.append(money)        if buy_condition==True:            money=(float(option_c_data_near['closePrice'])-float(option_c_data_near['openPrice'])-float(option_c_data_high['closePrice'])+float(option_c_data_high['openPrice']))*10000            profit.append(money)all_profit=pd.Series(profit).cumsum()

註:代碼僅供參考,請勿直接使用,有bug.另外沒有考慮手續約的問題。


相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.