python實現k均值演算法樣本(k均值聚類演算法)

來源:互聯網
上載者:User
簡單實現平面的點K均值分析,使用歐幾裡得距離,並用pylab展示。

複製代碼 代碼如下:


import pylab as pl

#calc Euclid squire
def calc_e_squire(a, b):
return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2

#init the 20 point
a = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]
b = [5,6,1,4,2,4,3,1,7,9,16,11,19,12,15,14,11,14,11,19]

#define two k_value
k1 = [6,3]
k2 = [6,1]

#defint tow cluster
sse_k1 = []
sse_k2 = []
while True:
sse_k1 = []
sse_k2 = []
for i in range(20):
e_squire1 = calc_e_squire(k1, [a[i], b[i]])
e_squire2 = calc_e_squire(k2, [a[i], b[i]])
if (e_squire1 <= e_squire2):
sse_k1.append(i)
else:
sse_k2.append(i)

#change k_value
k1_x = sum([a[i] for i in sse_k1]) / len(sse_k1)
k1_y = sum([b[i] for i in sse_k1]) / len(sse_k1)

k2_x = sum([a[i] for i in sse_k2]) / len(sse_k2)
k2_y = sum([b[i] for i in sse_k2]) / len(sse_k2)

if k1 != [k1_x, k1_y] or k2 != [k2_x, k2_y]:
k1 = [k1_x, k1_y]
k2 = [k2_x, k2_y]
else:
break

kv1_x = [a[i] for i in sse_k1]
kv1_y = [b[i] for i in sse_k1]

kv2_x = [a[i] for i in sse_k2]
kv2_y = [b[i] for i in sse_k2]

pl.plot(kv1_x, kv1_y, 'o')
pl.plot(kv2_x, kv2_y, 'or')

pl.xlim(1, 20)
pl.ylim(1, 20)
pl.show()

  • 聯繫我們

    該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

    如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

    A Free Trial That Lets You Build Big!

    Start building with 50+ products and up to 12 months usage for Elastic Compute Service

    • Sales Support

      1 on 1 presale consultation

    • After-Sales Support

      24/7 Technical Support 6 Free Tickets per Quarter Faster Response

    • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.