標籤:python進程池 、python多進程
在利用Python進行系統管理的時候,特別是同時操作多個檔案目錄,或者遠端控制多台主機,並行操作可以節約大量的時間。當被操作對象數目不大時,可以直接利用multiprocessing中的Process動態成生多個進程,10幾個還好,但如果是上百個,上千個目標,手動的去限制進程數量卻又太過繁瑣,這時候進程池Pool發揮作用的時候就到了。
Pool可以提供指定數量的進程,供使用者調用,當有新的請求提交到pool中時,如果池還沒有滿,那麼就會建立一個新的進程用來執行該請求;但如果池中的進程數已經達到規定最大值,那麼該請求就會等待,直到池中有進程結束,才會建立新的進程來它。這裡有一個簡單的例子:
#!/usr/bin/env python #coding=utf-8 """ Description: a simple sample for pool class """ from multiprocessing import Pool from time import sleep def f(x): for i in range(10): print ‘%s --- %s ‘ % (i, x) sleep(1) def main(): pool = Pool(processes=3) #設定最大進程數 3 for i in range(11,20): result = pool.apply_async(f, (i,)) pool.close() pool.join() if result.successful(): print ‘successful‘ if __name__ == "__main__": main()
先建立容量為3的進程池,然後將f(i)依次傳遞給它,運行指令碼後利用ps aux | grep pool.py查看進程情況,會發現最多隻會有三個進程執行。
pool.apply_async()用來向進程池提交目標請求,
pool.join()是用來等待進程池中的worker進程執行完畢,防止主進程在worker進程結束前結束。但必pool.join()必須使用在pool.close()或者pool.terminate()之後。其中close()跟terminate()的區別在於close()會等待池中的worker進程執行結束再關閉pool,而terminate()則是直接關閉。
result.successful()表示整個調用執行的狀態,如果還有worker沒有執行完,則會拋出AssertionError異常。
利用multiprocessing下的Pool可以很方便的同時自動處理幾百或者上千個並行操作,指令碼的複雜性也大大降低。
python多進程操作-進程池