標籤:.com form bool dimens property lse mon cut nta
pandas.DataFrame
-
class
pandas.
DataFrame
(
data=None,
index=None,
columns=None,
dtype=None,
copy=False)[source]
-
Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure
Parameters: |
data : numpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects
index : Index or array-like
Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided
columns : Index or array-like
Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer
copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input
|
See also
-
DataFrame.from_records
-
constructor from tuples, also record arrays
-
DataFrame.from_dict
-
from dicts of Series, arrays, or dicts
-
DataFrame.from_items
-
from sequence of (key, value) pairs
pandas.read_csv
, pandas.read_table
, pandas.read_clipboard
1. 先來個小菜
基於dictionary建立
from pandas import Series, DataFrameimport pandas as pd import numpy as npd = {‘col1‘:[1,2],‘col2‘:[3,4]}df = pd.DataFrame(data=d)print(df)print(df.dtypes)# col1 col2#0 1 3#1 2 4#col1 int64#col2 int64#dtype: object
基於Numy的ndarrary
df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),columns=[‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘])print (df2)# a b c d e#0 0 2 4 7 0#1 6 7 3 4 1#2 5 3 3 8 7#3 0 9 4 3 4#4 7 4 7 0 0
Python Pandas -- DataFrame