標籤:
在利用Python進行系統管理的時候,特別是同時操作多個檔案目錄,或者遠端控制多台主機,並行操作可以節約大量的時間。當被操作對象數目不大時,可以直接利用multiprocessing中的Process動態成生多個進程,十幾個還好,但如果是上百個,上千個目標,手動的去限制進程數量卻又太過繁瑣,此時可以發揮進程池的功效。
Pool可以提供指定數量的進程供使用者調用,當有新的請求提交到pool中時,如果池還沒有滿,那麼就會建立一個新的進程用來執行該請求;但如果池中的進程數已經達到規定最大值,那麼該請求就會等待,直到池中有進程結束,才會建立新的進程來它。
例1:使用進程池
#coding: utf-8import multiprocessingimport timedef func(msg): print "msg:", msg time.sleep(3) print "end"if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) #維持執行的進程總數為processes,當一個進程執行完畢後會添加新的進程進去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #調用join之前,先調用close函數,否則會出錯。執行完close後不會有新的進程加入到pool,join函數等待所有子進程結束 print "Sub-process(es) done."
一次執行結果
mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0msg: hello 1msg: hello 2endmsg: hello 3endendendSub-process(es) done.
函數解釋:
- apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解區別,看例1例2結果區別)
- close() 關閉pool,使其不在接受新的任務。
- terminate() 結束背景工作處理序,不在處理未完成的任務。
- join() 主進程阻塞,等待子進程的退出, join方法要在close或terminate之後使用。
執行說明:建立一個進程池pool,並設定進程的數量為3,xrange(4)會相繼產生四個對象[0, 1, 2, 4],四個對象被提交到pool中,因pool指定進程數為3,所以0、1、2會直接送到進程中執行,當其中一個執行完事後才空出一個進程處理對象3,所以會出現輸出“msg: hello 3”出現在"end"後。因為為非阻塞,主函數會自己執行自個的,不搭理進程的執行,所以運行完for迴圈後直接輸出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程式在pool.join()處等待各個進程的結束。
例2:使用進程池(阻塞)
#coding: utf-8import multiprocessingimport timedef func(msg): print "msg:", msg time.sleep(3) print "end"if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) #維持執行的進程總數為processes,當一個進程執行完畢後會添加新的進程進去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #調用join之前,先調用close函數,否則會出錯。執行完close後不會有新的進程加入到pool,join函數等待所有子進程結束 print "Sub-process(es) done."
一次執行的結果
msg: hello 0endmsg: hello 1endmsg: hello 2endmsg: hello 3endMark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~Sub-process(es) done.
例3:使用進程池,並關注結果
import multiprocessingimport timedef func(msg): print "msg:", msg time.sleep(3) print "end" return "done" + msgif __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in xrange(3): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print ":::", res.get() print "Sub-process(es) done."
一次執行結果
msg: hello 0msg: hello 1msg: hello 2endendend::: donehello 0::: donehello 1::: donehello 2Sub-process(es) done.
例4:使用多個進程池
#coding: utf-8import multiprocessingimport os, time, randomdef Lee(): print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()擷取當前的進程的ID start = time.time() time.sleep(random.random() * 10) #random.random()隨機產生0-1之間的小數 end = time.time() print ‘Task Lee, runs %0.2f seconds.‘ %(end - start)def Marlon(): print "\nRun task Marlon-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 40) end=time.time() print ‘Task Marlon runs %0.2f seconds.‘ %(end - start)def Allen(): print "\nRun task Allen-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 30) end = time.time() print ‘Task Allen runs %0.2f seconds.‘ %(end - start)def Frank(): print "\nRun task Frank-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 20) end = time.time() print ‘Task Frank runs %0.2f seconds.‘ %(end - start) if __name__==‘__main__‘: function_list= [Lee, Marlon, Allen, Frank] print "parent process %s" %(os.getpid()) pool=multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) #Pool執行函數,apply執行函數,當有一個進程執行完畢後,會添加一個新的進程到pool中 print ‘Waiting for all subprocesses done...‘ pool.close() pool.join() #調用join之前,一定要先調用close() 函數,否則會出錯, close()執行後不會有新的進程加入到pool,join函數等待素有子進程結束 print ‘All subprocesses done.‘
一次執行結果
parent process 7704Waiting for all subprocesses done...Run task Lee-6948Run task Marlon-2896Run task Allen-7304Run task Frank-3052Task Lee, runs 1.59 seconds.Task Marlon runs 8.48 seconds.Task Frank runs 15.68 seconds.Task Allen runs 18.08 seconds.All subprocesses done.
python進程池:multiprocessing.pool