python實現樓價預測,採用迴歸和隨機梯度下降法

來源:互聯網
上載者:User
from sklearn.datasets import load_bostonboston = load_boston()from sklearn.cross_validation import train_test_splitimport numpy as np;X = boston.datay = boston.targetX_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)print 'The max target value is: ', np.max(boston.target)print 'The min target value is: ', np.min(boston.target)print 'The average terget value is: ', np.mean(boston.target)from sklearn.preprocessing import StandardScalerss_X = StandardScaler()ss_y = StandardScaler()X_train = ss_X.fit_transform(X_train)X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train)y_test = ss_y.transform(y_test)from sklearn.linear_model import LinearRegressionlr = LinearRegression()lr.fit(X_train, y_train)lr_y_predict = lr.predict(X_test)from sklearn.linear_model import SGDRegressorsgdr = SGDRegressor()sgdr.fit(X_train, y_train)sgdr_y_predict = sgdr.predict(X_test)print 'The value of default measurement of LinearRegression is: ', lr.score(X_test, y_test)from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_errorprint 'The value of R-squared of LinearRegression is: ', r2_score(y_test, lr_y_predict)print 'The mean squared error of LinearRegression is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print 'The mean absolute error of LinearRegression is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print 'The value of default measurement of SGDRegression is: ', sgdr.score(X_test, y_test)print 'The value of R-squared of SGDRegression is: ', r2_score(y_test, sgdr_y_predict)print 'the value of mean squared error of SGDRgression is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))print 'the value of mean ssbsolute error of SGDRgression is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.