Python的MongoDB模組PyMongo操作方法集錦

來源:互聯網
上載者:User
開始之前當然要匯入模組啦:

>>> import pymongo

下一步,必須本地mongodb伺服器的安裝和啟動已經完成,才能繼續下去。

建立於MongoClient 的串連:

client = MongoClient('localhost', 27017)# 或者client = MongoClient('mongodb://localhost:27017/')

得到資料庫:

>>> db = client.test_database# 或者>>> db = client['test-database']

得到一個資料集合:

collection = db.test_collection# 或者collection = db['test-collection']

MongoDB中的資料使用的是類似Json風格的文檔:

>>> import datetime>>> post = {"author": "Mike",...     "text": "My first blog post!",...     "tags": ["mongodb", "python", "pymongo"],...     "date": datetime.datetime.utcnow()}

插入一個文檔:

>>> posts = db.posts>>> post_id = posts.insert_one(post).inserted_id>>> post_idObjectId('...')

找一條資料:

>>> posts.find_one(){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}>>> posts.find_one({"author": "Mike"}){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}>>> posts.find_one({"author": "Eliot"})>>>

通過ObjectId來尋找:

>>> post_idObjectId(...)>>> posts.find_one({"_id": post_id}){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

不要轉化ObjectId的類型為String:

>>> post_id_as_str = str(post_id)>>> posts.find_one({"_id": post_id_as_str}) # No result>>>

如果你有一個post_id字串,怎麼辦呢?

from bson.objectid import ObjectId# The web framework gets post_id from the URL and passes it as a stringdef get(post_id):  # Convert from string to ObjectId:  document = client.db.collection.find_one({'_id': ObjectId(post_id)})

多條插入:

>>> new_posts = [{"author": "Mike",...        "text": "Another post!",...        "tags": ["bulk", "insert"],...        "date": datetime.datetime(2009, 11, 12, 11, 14)},...       {"author": "Eliot",...        "title": "MongoDB is fun",...        "text": "and pretty easy too!",...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]>>> result = posts.insert_many(new_posts)>>> result.inserted_ids[ObjectId('...'), ObjectId('...')]

尋找多條資料:

>>> for post in posts.find():...  post...{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

當然也可以約束尋找條件:

>>> for post in posts.find({"author": "Mike"}):...  post...{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

擷取集合的資料條數:

>>> posts.count()

或者說滿足某種尋找條件的資料條數:

>>> posts.find({"author": "Mike"}).count()

範圍尋找,比如說時間範圍:

>>> d = datetime.datetime(2009, 11, 12, 12)>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):...  print post...{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小於的意思。

如何建立索引呢?比如說下面這個尋找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]u'BasicCursor'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:

>>> from pymongo import ASCENDING, DESCENDING>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])u'date_-1_author_1'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]u'BtreeCursor date_-1_author_1'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

串連聚集

>>> account = db.Account#或 >>> account = db["Account"]

查看全部聚集名稱

>>> db.collection_names()

查看聚集的一條記錄

>>> db.Account.find_one() >>> db.Account.find_one({"UserName":"keyword"})

查看聚集的欄位

>>> db.Account.find_one({},{"UserName":1,"Email":1}){u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'} >>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0}){u'UserName': u'libing', u'Email': u'libing@35.cn'}

查看聚集的多條記錄

>>> for item in db.Account.find():    item >>> for item in db.Account.find({"UserName":"libing"}):    item["UserName"]

查看聚集的記錄統計

>>> db.Account.find().count() >>> db.Account.find({"UserName":"keyword"}).count()

聚集查詢結果排序

>>> db.Account.find().sort("UserName") #預設為升序>>> db.Account.find().sort("UserName",pymongo.ASCENDING)  #升序>>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序

聚集查詢結果多列排序

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

添加記錄

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})

修改記錄

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

刪除記錄

>>> db.Account.remove()  -- 全部刪除 >>> db.Test.remove({"UserName":"keyword"})
  • 聯繫我們

    該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

    如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

    A Free Trial That Lets You Build Big!

    Start building with 50+ products and up to 12 months usage for Elastic Compute Service

    • Sales Support

      1 on 1 presale consultation

    • After-Sales Support

      24/7 Technical Support 6 Free Tickets per Quarter Faster Response

    • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.