標籤:nosql資料庫 redis io 安全執行緒 多線程
在Redis系統中也存在後台服務的概念,background Service,後台線程在Redis中的表現主要為background I/O Service,有了後台線程的支援,系統在執行的效率上也勢必會有不一樣的提高。在Redis代碼中,描述了此功能的檔案為bio.c,同樣藉此機會學習一下,在C語言中的多線程編程到底是怎麼一回事。我們先來看看,在Redis中的background job的工作形式;
/* Background I/O service for Redis. * * 後台I/O服務 * This file implements operations that we need to perform in the background. * Currently there is only a single operation, that is a background close(2) * system call. This is needed as when the process is the last owner of a * reference to a file closing it means unlinking it, and the deletion of the * file is slow, blocking the server. * * In the future we'll either continue implementing new things we need or * we'll switch to libeio. However there are probably long term uses for this * file as we may want to put here Redis specific background tasks (for instance * it is not impossible that we'll need a non blocking FLUSHDB/FLUSHALL * implementation). * * DESIGN * ------ * * The design is trivial, we have a structure representing a job to perform * and a different thread and job queue for every job type. * Every thread wait for new jobs in its queue, and process every job * sequentially. * * Jobs of the same type are guaranteed to be processed from the least * recently inserted to the most recently inserted (older jobs processed * first). * * Currently there is no way for the creator of the job to be notified about * the completion of the operation, this will only be added when/if needed. * * 作者定義了一個結構體代表一個工作,每個線程等待從相應的job Type工作隊列中擷取一個job,每個job的排列的都按照時間 * 有序排列的 * ----------------------------------------------------------------------------
這裡總共與2種Background I/O Type:
/* Background job opcodes *//* 定義了2種後台工作的類別 */#define REDIS_BIO_CLOSE_FILE 0 /* Deferred close(2) syscall.檔案的關閉 */#define REDIS_BIO_AOF_FSYNC 1 /* Deferred AOF fsync.AOF檔案的同步 */ /* BIO後台操作類型總數為2個 */#define REDIS_BIO_NUM_OPS 2
一個是AOF檔案的同步操作,AOF就是“Append ONLY File”的縮寫,記錄每次的資料改變的寫操作,用於資料的恢複。還有一個我好像沒碰到過,CLOSE FILE,難道是非同步關閉檔案的意思。
static pthread_t bio_threads[REDIS_BIO_NUM_OPS]; /* 定義了bio線程組變數 */static pthread_mutex_t bio_mutex[REDIS_BIO_NUM_OPS]; /* 線程相對應的mutex變數,用於同步操作 */static pthread_cond_t bio_condvar[REDIS_BIO_NUM_OPS];static list *bio_jobs[REDIS_BIO_NUM_OPS]; /* 每種job類型都是一個列表 *//* The following array is used to hold the number of pending jobs for every * OP type. This allows us to export the bioPendingJobsOfType() API that is * useful when the main thread wants to perform some operation that may involve * objects shared with the background thread. The main thread will just wait * that there are no longer jobs of this type to be executed before performing * the sensible operation. This data is also useful for reporting. */static unsigned long long bio_pending[REDIS_BIO_NUM_OPS]; /* 此類型job等待執行的數量 *//* This structure represents a background Job. It is only used locally to this * file as the API does not expose the internals at all. *//* background Job結構體 */struct bio_job {//job建立的時間 time_t time; /* Time at which the job was created. */ /* Job specific arguments pointers. If we need to pass more than three * arguments we can just pass a pointer to a structure or alike. */ /* job特定參數指標 */ void *arg1, *arg2, *arg3;};
上面聲明了一些變數,包括bio_threads線程數組,總數2個,bio_jobs列表數組,存放每種Type的job。下面我們看主要的一些方法:
/* Exported API */void bioInit(void); /* background I/O初始化操作 */void bioCreateBackgroundJob(int type, void *arg1, void *arg2, void *arg3); /* 建立後台job,通過傳入的3個參數初始化 */unsigned long long bioPendingJobsOfType(int type); /* 返回type類型的job正在等待被執行的個數 */void bioWaitPendingJobsLE(int type, unsigned long long num); /* 返回type類型的job正在等待被執行的個數 */time_t bioOlderJobOfType(int type); void bioKillThreads(void); /* 殺死後台所有線程 */
首先看初始化操作;
/* Initialize the background system, spawning the thread. *//* background I/O初始化操作 */void bioInit(void) { pthread_attr_t attr; pthread_t thread; size_t stacksize; int j; /* Initialization of state vars and objects */ for (j = 0; j < REDIS_BIO_NUM_OPS; j++) { pthread_mutex_init(&bio_mutex[j],NULL); pthread_cond_init(&bio_condvar[j],NULL); //建立每個job類型的List列表 bio_jobs[j] = listCreate(); bio_pending[j] = 0; } /* Set the stack size as by default it may be small in some system */ //設定線程棧空間 pthread_attr_init(&attr); pthread_attr_getstacksize(&attr,&stacksize); if (!stacksize) stacksize = 1; /* The world is full of Solaris Fixes */ while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2; pthread_attr_setstacksize(&attr, stacksize); /* Ready to spawn our threads. We use the single argument the thread * function accepts in order to pass the job ID the thread is * responsible of. */ for (j = 0; j < REDIS_BIO_NUM_OPS; j++) { void *arg = (void*)(unsigned long) j; //建立2個線程,專門運行相應類型的job if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) { redisLog(REDIS_WARNING,"Fatal: Can't initialize Background Jobs."); exit(1); } //賦值到相應的Thread中 bio_threads[j] = thread; }}
也就是說,執行完上述的操作之後,在bio_threads線程中就運行著2個線程,從各自的job列表中取出相應的等待執行的jo;
/* 建立後台job,通過傳入的3個參數初始化 */void bioCreateBackgroundJob(int type, void *arg1, void *arg2, void *arg3) { struct bio_job *job = zmalloc(sizeof(*job)); job->time = time(NULL); job->arg1 = arg1; job->arg2 = arg2; job->arg3 = arg3; pthread_mutex_lock(&bio_mutex[type]); //加入相對應的job type列表 listAddNodeTail(bio_jobs[type],job); //等待的job數量增加1 bio_pending[type]++; pthread_cond_signal(&bio_condvar[type]); pthread_mutex_unlock(&bio_mutex[type]);}
簡潔的建立background job操作,上面利用了mutex變數實現了線程同步操作,保證安全執行緒。下面看一下最重要的執行background Job的操作實現(省略了部分代碼):
/* 執行背景job,參數內包含著哪種type */void *bioProcessBackgroundJobs(void *arg) { ...... while(1) { listNode *ln; /* The loop always starts with the lock hold. */ if (listLength(bio_jobs[type]) == 0) { pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]); continue; } /* Pop the job from the queue. */ //從工作列表中取出第一個job ln = listFirst(bio_jobs[type]); job = ln->value; /* It is now possible to unlock the background system as we know have * a stand alone job structure to process.*/ pthread_mutex_unlock(&bio_mutex[type]); /* Process the job accordingly to its type. */ //執行具體的工作 if (type == REDIS_BIO_CLOSE_FILE) { close((long)job->arg1); } else if (type == REDIS_BIO_AOF_FSYNC) { aof_fsync((long)job->arg1); } else { redisPanic("Wrong job type in bioProcessBackgroundJobs()."); } zfree(job); /* Lock again before reiterating the loop, if there are no longer * jobs to process we'll block again in pthread_cond_wait(). */ pthread_mutex_lock(&bio_mutex[type]); listDelNode(bio_jobs[type],ln); bio_pending[type]--; }}
while迴圈,從隊列中取出一個,執行一個操作。當然,如果想馬上停止一切後台線程,可以執行下面的方法,調用
pthread_cancel:
/* Kill the running bio threads in an unclean way. This function should be * used only when it's critical to stop the threads for some reason. * Currently Redis does this only on crash (for instance on SIGSEGV) in order * to perform a fast memory check without other threads messing with memory. *//* 殺死後台所有線程 */void bioKillThreads(void) { int err, j; for (j = 0; j < REDIS_BIO_NUM_OPS; j++) { //調用pthread_cancel方法kill當前的後台線程 if (pthread_cancel(bio_threads[j]) == 0) { if ((err = pthread_join(bio_threads[j],NULL)) != 0) { redisLog(REDIS_WARNING, "Bio thread for job type #%d can be joined: %s", j, strerror(err)); } else { redisLog(REDIS_WARNING, "Bio thread for job type #%d terminated",j); } } }}
Redis源碼分析(二十九)--- bio後台I/O服務的實現