標準常態分佈函數和分位元函數的數值演算法可參考高惠璿編著的《統計計算》
以下是C#版本的實現代碼:
/// <summary>
/// 標準常態分佈函數Phi(x)
/// </summary>
/// <param name="x">隨機變數</param>
/// <returns>標準常態分佈機率</returns>
static double NormDistFunc(double x)
{ double x0 = (x >= 0 ? x : -x);
double[] b = { 0.196854, 0.115194, 0.000344, 0.019527 }; double erf = 0;
for (int i = 1; i <= 4; i++)
{ erf += b[i - 1] * Math.Pow(x0, i);
}
erf = 1 - Math.Pow(1.0 + erf, -4);
double phi = (x >= 0 ? 0.5 * (1 + erf) : 0.5 * (1 - erf));
return phi;
}
/// <summary>
/// 標準常態分佈函數分位元函數
/// </summary>
/// <param name="p">機率</param>
/// <returns>分位元</returns>
static double NormDistributionQuantile(double p)
{ Debug.Assert((0 < p) && (p < 1));
if (p == 0.5)
return 0;
double[] b ={0.1570796288E1, 0.3706987906E-1, -0.8364353589E-3, -0.2250947176E-3,
0.6841218299E-5, 0.5824238515E-5,
-0.1045274970E-5, 0.8360937017E-7,
-0.3231081277E-8, 0.3657763036E-10,
0.6936233982E-12};
double alpha = 0;
if ((0 < p) && (p < 0.5))
alpha = p;
else if ((0.5 < p) && (p < 1))
alpha = 1 - p;
double y = -Math.Log(4 * alpha * (1 - alpha));
double u = 0;
#if USE_TODA_FORMULA
//Toda近似公式,最大誤差1.2e-8
for (int i = 0; i < b.Length; i++)
{ u += b[i] * Math.Pow(y, i);
}
u = Math.Sqrt(y * u);
#else
//山內近似公式,最大誤差4.9e-4
u = Math.Sqrt(y * (2.0611786 - 5.7262204 / (y + 11.640595)));
#endif
double up = 0;
if ((0 < p) && (p < 0.5))
up = -u;
else if ((0.5 < p) && (p < 1))
up = u;
return up;
}
/// <summary>
/// 標準常態分佈機率密度函數
/// </summary>
/// <param name="x">隨機變數</param>
/// <returns>機率密度</returns>
static double NormDensityFunc(double x)
{ return Math.Exp(-x * x * 0.5) / Math.Sqrt(2 * Math.PI);
}