SICP 習題 (1.40)解題總結

來源:互聯網
上載者:User

標籤:style   class   blog   code   http   ext   

SICP 習題1.40 是一道題幹很簡單,但是看起來很複雜,本質其實比較簡單的一道題。


題目原題如下:

請定義一個過程cubic, 它和newtons-method過程一起使用在下面形式的運算式裡:

(newtons-method (cubic a b c) 1)

能逼進三次方程


的零點。


題幹是很簡單,就要求我們做個cubic過程,不過裡面涉及newtons-method和三次方程的零點,如果只看題目的話真不知道從哪裡下手。


要完成這道題,先得回去把書中得newtons-method過一遍,書中的newtons-method定義如下:


(define (newtons-method g guess)  (fixed-point (newton-transform g) guess))



其實就是求newton-transform的不動點。


那麼這個newton-transform,就是牛頓變換又是什麼呢?


書中的newton-transform定義如下:


(define (newton-transform g)  (lambda (x)    (- x (/ (g x) ((deriv g) x)))))



它的作用就是得出f(x),使f(x)如下:

f(x)= x - g(x) / Dg(x)



如書中1.3.4節介紹牛頓法時描述的:


如果x-> g(x)是一個可微函數,那麼方程g(x)=0 的一個解就是函數x->f(x)的一個不動點,其中f(x)= x - g(x) / Dg(x)


好,回到我們的題目,我們有一個函數

g(x)= 


我們要逼進函數g(x)的零點,就是求g(x)=0的一個解。

按以上的描述,就是我們要求(newtons-method <g(x)> 1),注意這裡不是一個合法的Scheme語句。


這裡的g(x)就是我們要做的cubic過程的傳回值。


問題到了這裡就變得很簡單了,不過是用cubic過程去產生一個表示三次方程的lambda過程而已,cubic流程定義如下:

(define (cubic a b c)   (lambda (x)    (+ (* x x x) (* a x x) (* b x) c)))

是不是結果有點出乎意料的簡單呢?




聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.