超像素分割技術發展情況梳理(Superpixel Segmentation)–電腦視覺專題3

來源:互聯網
上載者:User

超像素分割技術發展情況梳理(Superpixel Segmentation)

Sason@CSDN

當前更新日期:2013.05.12.


一. 基於圖論的方法(Graph-based algorithms):

1. Normalized cuts, 2000.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905,  2000.

T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In IEEE Computer Vision and Pattern Recognition (CVPR) 2005, 2005.


2. Graph-based segmentation, 2004.

Pedro Felzenszwalb and Daniel Huttenlocher. Efficient graph-basedimage segmentation. International Journal of Computer Vision (IJCV),59(2):167–181, September 2004.


3. Graph cuts method, 2008.

Alastair Moore, Simon Prince, Jonathan Warrell, Umar Mohammed, andGraham Jones. Superpixel Lattices. IEEE Computer Vision and PatternRecognition (CVPR), 2008.


4. GCa10 and GCb10, 2010.

O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization framework. In European Conference on Computer Vision (ECCV), 2010.

5. Entropy Rate Superpixel Segmentation, 2011.

Ming-Yu Liu, Tuzel, O., Ramalingam, S. , Chellappa, R., Entropy Rate Superpixel Segmentation, CVPR,2011.


二. 基於梯度下降的方法(Gradient-ascent-based algorithms):

1. Watershed,1991.

Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 13(6):583–598, 1991.


2. Mean Shift, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward featurespace analysis. IEEE Transactions on Pattern Analysis and MachineIntelligence, 24(5):603–619, May 2002.


3. Quick Shift, 2008

A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In European Conference on Computer Vision (ECCV), 2008.


4. Turbopixel, 2009.

A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels using geometric flows. IEEETransactions on Pattern Analysis and Machine Intelligence (PAMI),2009.


自然映像摳圖/視頻摳像技術發展情況梳理(image matting, alpha matting, video matting)--電腦視覺專題1

http://blog.csdn.net/anshan1984/article/details/8581225

映像/視覺顯著性檢測技術發展情況梳理(Saliency Detection、Visual Attention)--電腦視覺專題2
http://blog.csdn.net/anshan1984/article/details/8657176

超像素分割技術發展情況梳理(Superpixel Segmentation)--電腦視覺專題3
http://blog.csdn.net/anshan1984/article/details/8918167


歡迎來到我的CSDN部落格:http://blog.csdn.net/anshan1984/


聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.